• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

한반도 적설심 재분석자료의 오차 및 불확실성 평가 (Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea)

9 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2023.09
9P 미리보기
한반도 적설심 재분석자료의 오차 및 불확실성 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 56권 / 9호 / 543 ~ 551페이지
    · 저자명 : 전현호, 이슬찬, 이양원, 김진수, 최민하

    초록

    눈은 기후계와 지표면 에너지 평형에 영향을 끼치는 필수 기후 인자이며, 겨울 동안 저장한 고체 형태의 물을 봄에 유출, 지하수 함양 등에 제공하여 물 평형에도 결정적인 역할을 한다. 본 연구에서는 Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), ERA5-Land 적설심 자료의 통계 분석을 통해 남한에서의 활용 가능성을 평가하였다. 기상청에서 제공하는 Automated Synoptic Observing System (ASOS) 지상관측자료와 재분석자료간의 통계분석 결과, LDAPS와 ERA5-Land의 상관계수가 0.69 이상으로 상관성이 높게 나타났으나 LDAPS는 RMSE가 0.79 m로 오차가 크게 나타났다. MERRA-2의 경우 일부 기간 동안 일정한 값이 연속적으로 산출되어 자료간 증감 추이를 적절하게 모의하지 못하였기에 상관계수가 0.17로 상관성이 낮게 나타났다. LDAPS와 ASOS의 지점별 통계분석 결과 상대적으로 평균 강설량이 높게 나타나는 강원도 인근에서 성능이 높게 나타났으며, 평균 강설량이 낮게 나타나는 남부 지역에서 성능이 낮게 나타났다. 마지막으로, triple collocation (TC)를 통해 본 연구에서 활용된 4개의 독립적인 적설심자료 간의 오차 분산을 산정하였으며, 나아가 가중치 산정을 통해 융합된 적설심 자료를 생산하였다. 재분석자료는 LDAPS, MERRA-2, ERA5-Land 순으로 오차 분산이 높게 나타났으며, LDAPS의 경우 오차 분산이 높게 산정되어 가중치가 낮게 산정되었다. 또한, ERA5-Land 적설심 자료의 공간 분포가 변동성이 적게 나타나, TC로 융합된 적설심 자료는 저해상도 영상인 MERRA-2와 유사한 공간 분포가 나타났다. 자료의 상관성, 오차, 불확실성을 고려하였을 때, ERA5-Land 자료가 남한을 대상으로 적설 관련 분석을 하기 적합한 것으로 판단된다. 또한, 타 자료와 경향성은 높게 나타나나 과대 산정되는 경향이 있는 LDAPS 자료를 대상으로 적절한 보정이 수행될 시, 지역 및 기후적 다양성을 높은 해상도로 표출할 수 있는 LDAPS 자료를 적극적으로 활용할 수 있을 것으로 기대된다.

    영어초록

    Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:18 오전