• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

XGBoost를 활용한 시설물의 부재 상태 예측 (Condition Estimation of Facility Elements Using XGBoost)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
9 페이지
기타파일
최초등록일 2025.05.04 최종저작일 2023.01
9P 미리보기
XGBoost를 활용한 시설물의 부재 상태 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국건설관리학회
    · 수록지 정보 : 한국건설관리학회 논문집 / 24권 / 1호 / 31 ~ 39페이지
    · 저자명 : 장태연, 윤시후, 지석호, 임석빈

    초록

    시설물의 고령화로 인한 유지관리 비용을 줄이고 안전성을 확보하기 위해서는 시설물 유지관리 데이터를 활용하여 향후 시설물의 상태를 예측하고 이를 유지관리 의사결정에 활용하는 것이 중요하다. 이를 위해 본 연구는 XGBoost를 활용하여 다양한 유지관리 정보로부터 향후 시설물의 부재 상태를 추정하는 방법론을 제안함을 목표로 한다. 방법론의 유효성을 검증하기 위해 교량시설물을 대상으로 샘플 데이터를 구축하고, 차기 정밀안전점검 및 정밀안전진단 시 부재 상태등급 예측모델을 개발 및 평가했다. 예측모델의 성능 평가 결과, 주요 부재(바닥판, 주형, 교대/교각) 상태등급을 예측하는 데 준수한 성능을 보였다(평균 F1 score 0.869). 또한 개발된 예측모델의 실무적 활용 가능성을 실증하기 위해 FMS 유지관리 데이터 관리 기능과 주요부재 상태등급 예측 기능을 제공하는 테스트베드를 구축했다. 이를 통해 본 연구에서 구축한 샘플 데이터와 예측모델을 활용하여 시설물 관리자에게 유지관리 의사결정에 필요한 시설물 정보 및 시설물 상태 예측정보를 제공할 수 있음을 확인할 수 있었다. 향후에는 추가적으로 데이터를 수집하고 다량의 데이터가 축적된 경우 좋은 성능을 보인다고 알려진 딥러닝 알고리즘을 활용함으로써 예측 성능을 높일 수 있다. 또한 제안된 방법론을 터널, 항만 등 다양한 시설물에 적용하여 상태등급 예측모델을 개발할 수 있다.

    영어초록

    To reduce facility management costs and safety concerns due to aging of facilities, it is important to estimate the future facilities’ condition based on facility management data and utilize predictive information for management decision making. To this end, this study proposed a methodology to estimate facility elements’ condition using XGBoost. To validate the proposed methodology, this study constructed sample data for road bridges and developed a model to estimate condition grades of major elements expected in the next inspection. As a result, the developed model showed satisfactory performance in estimating the condition grades of deck, girder, and abutment/pier (average F1 score 0.869). In addition, a testbed was established that provides data management function and element condition estimation function to demonstrate the practical applicability of the proposed methodology. It was confirmed that the facility management data and predictive information in this study could help managers in making facility management decisions.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국건설관리학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:01 오전