• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

한국어에서 의존 구문분석을 위한 구묶음의 활용 (Exploiting Chunking for Dependency Parsing in Korean)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.05.03 최종저작일 2022.07
8P 미리보기
한국어에서 의존 구문분석을 위한 구묶음의 활용
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 11권 / 7호 / 291 ~ 298페이지
    · 저자명 : 남궁영, 김재훈

    초록

    본 논문은 한국어에 대해서 구묶음을 수행한 후에 의존구조를 분석하는 방법을 제안한다. 의존구조 분석은 단어의 지배어를 결정하는 과정이다.
    지배어를 정할 때, 문법적인 지배어를 정할 것인지 의미적인 지배어를 정할 것인지가 고질적인 문제이다. 일반적으로는 문법적인 지배어를 정하고있다. 예를 들면 문장 “밥을 먹고 싶다”에서 어절 “먹고”의 지배어로 “싶다”를 정한다. 그러나 “싶다”는 보조용언으로 의미적으로 지배어가 될 수없다. 이와 같은 방법으로 구문을 분석하면 의미분석을 위해서 또 다른 변환이 있어야 한다. 본 논문에서는 이런 문제를 다소 완화하기 위해서구묶음을 수행한 후에 구문을 분석하는 방법을 제안한다. 구묶음은 문장을 구성성분 단위로 분할하는 과정이며 구성성분은 내용어 말덩이와 기능어말덩이로 구성된다. 구묶음을 수행하면 구문 분석의 입력이 되는 문장 성분의 수가 줄어들므로 구문 분석 속도가 개선될 수 있으며, 문장에서중심어를 중심으로 하나의 말덩이로 묶이므로 말덩이에 대해서만 그 의존 관계를 파악할 수 있어 구문 분석의 효율성을 높일 수 있다. 본 논문은세종의존말뭉치를 사용해서 성능을 분석했으며 UAS와 LAS가 각각 86.48%와 84.56%였으며 입력의 노드 수도 약 22% 정도 줄일 수 있었다.

    영어초록

    In this paper, we present a method for dependency parsing with chunking in Korean. Dependency parsing is a task of determininga governor of every word in a sentence. In general, we used to determine the syntactic governor in Korean and should transform thesyntactic structure into semantic structure for further processing like semantic analysis in natural language processing. There is anotorious problem to determine whether syntactic or semantic governor. For example, the syntactic governor of the word “먹고 (eat)”in the sentence “밥을 먹고 싶다 (would like to eat)” is “싶다 (would like to)”, which is an auxiliary verb and therefore can not be asemantic governor. In order to mitigate this somewhat, we propose a Korean dependency parsing after chunking, which is a processof segmenting a sentence into constituents. A constituent is a word or a group of words that function as a single unit within adependency structure and is called a chunk in this paper. Compared to traditional dependency parsing, there are some advantage ofthe proposed method: (1) The number of input units in parsing can be reduced and then the parsing speed could be faster. (2) Theeffectiveness of parsing can be improved by considering the relation between two head words in chunks. Through experiments forSejong dependency corpus, we have shown that the USA and LAS of the proposed method are 86.48% and 84.56%, respectively andthe number of input units is reduced by about 22%p.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:28 오전