• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

모바일환경에서 위조서명에 강건한 딥러닝 기반의 핑거서명검증 연구 (Mobile Finger Signature Verification Robust to Skilled Forgery)

10 페이지
기타파일
최초등록일 2025.05.01 최종저작일 2016.10
10P 미리보기
모바일환경에서 위조서명에 강건한 딥러닝 기반의 핑거서명검증 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 26권 / 5호 / 1161 ~ 1170페이지
    · 저자명 : 남승수, 서창호, 최대선

    초록

    본 논문에서는 스마트폰에서 손가락으로 서명하는 동적서명에서 위조서명에 강건한 검증 방법을 제안한다. 본 논문에서는 위조서명을 효과적으로 구분할 수 있도록 재생산 신경망의 일종인 1 class Auto-Encoder 모델을 사용한다.
    핑거서명에서는 지원되지 않는 펜 압력 등 기존의 특징 정보 대신 대부분의 스마트폰에서 지원하는 가속도센서를 추가로 활용하여 서명이 이루어지고 있는 동안 스마트폰의 동적인 움직임의 특징정보를 추출한다. 서명 데이터는 리샘플링을 통해 길이를 맞추고, 일정한 크기로 정규화하여 사용한다. 제안 방법의 성능을 평가하기 위해 테스트셋을 구축하여단일세션검증, 시간차 검증, 위조서명 검증의 3가지 실험을 실시하였다. 실험결과 위조서명 구분에 있어서 제안방법은기존 방법보다 EER이 최대 6.9% 더 낮았다. 또한, 서명의 모양과 속도만 사용한 기존의 방식보다 가속도센서를 추가한 방식이 1.5% 나은 성능을 보였고, 최고 3.5%의 에러율을 얻었다.

    영어초록

    In this paper, we provide an authentication technology for verifying dynamic signature made by finger on smart phone. In the proposed method, we are using the Auto-Encoder-based 1 class model in order to effectively distinguish skilled forgery signature. In addition to the basic dynamic signature characteristic information such as appearance and velocity of a signature, we use accelerometer value supported by most of the smartphone. Signed data is re-sampled to give the same length and is normalized to a constant size. We built a test set for evaluation and conducted experiment in three ways. As results of the experiment, the proposed acceleration sensor value and 1 class model shows 6.9% less EER than previous method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:12 오전