• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

온라인 소셜 네트워크에서 사용자 프로파일 기반의 모빙지수(Mobbing-Value) 알고리즘 (Mobbing-Value Algorithm based on User Profile in Online Social Network)

8 페이지
기타파일
최초등록일 2025.05.01 최종저작일 2009.12
8P 미리보기
온라인 소셜 네트워크에서 사용자 프로파일 기반의 모빙지수(Mobbing-Value) 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지D / 16권 / 6호 / 851 ~ 858페이지
    · 저자명 : 김국진, 박건우, 이상훈

    초록

    집단 따돌림을 청소년 문제로 국한했던 것과는 달리 오늘날 직장 내 집단 따돌림은 커다란 문제로 대두되고 있다. 국제 노동기구(ILO)의 따돌림 관련 유수의 보고와 국내의 경우를 볼 때 직장 내 따돌림 경험 응답 비율이 9.1%(’03)에서 30.7%(’08)로 증가하고 있다. 이러한 따돌림은 개인적, 사회적으로 커다란 손실을 초래한다. 제안한 알고리즘은 사용자 프로파일을 통해 현재 Mobbing(집단 따돌림)1) 희생자뿐 만 아니라 잠정적인 Mobbing 희생자의 가능성을 파악하여 효율적인 인원관리가 가능하다.
    본 논문에서는 Mobbing 현상에 관련된 사용자 프로파일 즉, 7개의 요소(Factor)와 그 하위에 포함된 50개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 ‘1’, 관계가 없으면 ‘0’으로 표현한다. 그리고 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들이 포함된 요소가 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 online social network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G22) Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the online social network, Bullies, Aggressive victims, Victims)에 매핑하여 사용자들의 Mobbing 성향을 파악하고 이를 토대로 효율적인 인원관리에 기여할 수 있다.

    영어초록

    Mobbing is not restricted to problem of young people but the bigger recent problem occurs in workspaces. According to reports of ILO and domestic case mobbing in the workplace is increasing more and more numerically from 9.1%('03) to 30.7%('08). These mobbing brings personal and social losses. The proposed algorithm makes it possible to grasp not only current mobbing victims but also potential mobbing victims through user profile and contribute to efficient personnel management.
    This paper extracts user profile related to mobbing, in a way of selecting seven factors and fifty attributes that are related to this matter. Next, expressing extracting factors as '1' if they are related me or not '0'. And apply similarity function to attributes summation included in factors to calculate similarity between the users. Third, calculate optimizing weight choosing factors included attributes by applying neural network algorithm of SPSS Clementine and through this summation Mobbing-Value(MV) can be calculated . Finally by mapping MV of online social network users to G2 mobbing propensity classification model(4 Groups; Ideal Group of the online social network, Bullies, Aggressive victims, Victims) which is designed in this paper, can grasp mobbing propensity of users, which will contribute to efficient personnel management.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회논문지D”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 10일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:02 오후