• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

TwinAMFNet: 3차원 시맨틱 세그멘테이션을 위한 Twin 어텐션 기반 멀티모달 퓨전 네트워크 (TwinAMFNet : Twin Attention-based Multi-modal Fusion Network for 3D Semantic Segmentation)

11 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2023.09
11P 미리보기
TwinAMFNet: 3차원 시맨틱 세그멘테이션을 위한 Twin 어텐션 기반 멀티모달 퓨전 네트워크
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 50권 / 9호 / 784 ~ 794페이지
    · 저자명 : 윤재근, 전지연, 송광호

    초록

    최근 자율주행에서 오인식으로 인한 충돌 사고가 증가함에 따라 멀티 모달 센서를 활용한 센서 퓨전 기반의 3차원 시맨틱 세그멘테이션에 관한 관심이 늘어나고 있다. 이에 따라 본 연구에서는 카메라와 LiDAR의 센서 퓨전을 통해 새로운 3차원 시맨틱 세그멘테이션 신경망인 TwinAMFNet을 소개한다. 제안하는 신경망은 RGB 영상과 2차원의 좌표 평면에 사영한 점 군 사영 영상을 처리하는 Twin 신경망을 포함하며 인코더 및 디코더에서의 특징 단계 퓨전을 위한 어텐션 기반 퓨전 모듈을 통해 더욱 확장된 객체 및 경계 구분에 대한 표현력 개선을 보여준다. 결과적으로 제안한 신경망은 mIoU를 기준으로 3차원 시맨틱 세그멘테이션에 약 68%의 성능을 기록하였으며 기존 연구들에 비해 약 4.5% 이상 향상된 성능을 보였다.

    영어초록

    Recently, with the increase in the number of accidents due to misrecognition in autonomous driving, interest in 3D semantic segmentation based on sensor fusion using multi-modal sensors has increased. Accordingly, this study introduces TwinAMFNet, a novel 3D semantic segmentation neural network through sensor fusion of RGB cameras and LiDAR. The proposed neural network includes a twin neural network that processes RGB images and point cloud projection images projected on a 2D coordinate plane and through an attention-based fusion module for feature step fusion in the encoder and decoder. The proposed method shows improvement of further extended object and boundary classification. As a result, the proposed neural network recorded approximately 68% performance in 3D semantic segmentation based on mIoU, and showed approximately 4.5% improved performance compared to the ones reported in the existing studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:52 오전