• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습을 이용한 풀필먼트센터의 실시간 박스 추천에 관한 연구 (A Study on the Real-time Recommendation Box Recommendation of Fulfillment Center Using Machine Learning)

15 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2023.12
15P 미리보기
기계학습을 이용한 풀필먼트센터의 실시간 박스 추천에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 8권 / 2호 / 149 ~ 163페이지
    · 저자명 : 차대욱, 조희연, 한지수, 신광섭, 민윤홍

    초록

    지속적인 이커머스 시장의 성장으로 풀필먼트센터가 처리해야 하는 주문량은 증가하였고, 다양한 고객요구사항은 주문 처리의 복잡성을 높이고 있다. 이러한 추세와 함께 최근 인건비 증가로 인해 풀필먼트센터의 운영 효율성이 기업 경영 관점에서 더욱 중요해지고 있다. 본 연구는 풀필먼트센터의 출고 프로세스 중포장 작업 영역에 적용 가능한 박스 추천을 중심으로 연구를 수행하였다. 박스 추천을 하기 위해 과거실적 데이터를 기계학습 모형의 학습 데이터로 사용하였다. 상품 정보, 주문 정보, 포장 정보, 배송 정보 4가지 종류의 데이터를 전처리, 변수 가공 과정을 거쳐 기계학습 모델에 적용하였다. 입력 벡터로는 상품규격 정보에 해당하는 width, length, height 3가지 특성을 사용하였으며, 상품의 실수 정보를 구간별 정수 체계로 변환하는 변수 가공 과정을 통해 입력 벡터의 특성을 추출하였다. 기계학습 모형별 성능을 비교한 결과 GradientBoosting 모델을 적용하였을 경우 21개의 구간으로 상품 규격 정보를 정수로 변환하였을때 95.2%로 가장 높은 정확도로 예측을 수행함을 확인하였다. 본 연구는 풀필먼트센터에서 잘못된 박스선택으로 인해 발생하는 물류비용의 증가와 박스 포장 소요 시간의 비효율을 줄이기 위한 방안으로 기계학습 모형을 제시하며, 상품 규격 정보의 특성을 효과적으로 추출하기 위한 변수 가공 처리 방식을 제안한다.

    영어초록

    Due to the continuous growth of the E-commerce market, the volume of orders that fulfillment centers have to process has increased, and various customer requirements have increased the complexity of order processing. Along with this trend, the operational efficiency of fulfillment centers due to increased labor costs is becoming more important from a corporate management perspective. Using historical performance data as training data, this study focused on real-time box recommendations applicable to packaging areas during fulfillment center shipping. Four types of data, such as product information, order information, packaging information, and delivery information, were applied to the machine learning model through pre-processing and feature-engineering processes. As an input vector, three characteristics were used as product specification information: width, length, and height, the characteristics of the input vector were extracted through a feature engineering process that converts product information from real numbers to an integer system for each section. As a result of comparing the performance of each model, it was confirmed that when the Gradient Boosting model was applied, the prediction was performed with the highest accuracy at 95.2% when the product specification information was converted into integers in 21 sections. This study proposes a machine learning model as a way to reduce the increase in costs and inefficiency of box packaging time caused by incorrect box selection in the fulfillment center, and also proposes a feature engineering method to effectively extract the characteristics of product specification information.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 08일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:36 오전