• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Short-time Fourier transform 소음맵을 이용한 컨볼루션기반 BSR (Buzz, Squeak, Rattle) 소음 분류 (BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map)

6 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2018.07
6P 미리보기
Short-time Fourier transform 소음맵을 이용한 컨볼루션기반 BSR (Buzz, Squeak, Rattle) 소음 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 37권 / 4호 / 256 ~ 261페이지
    · 저자명 : 부석준, 문세민, 조성배

    초록

    차량 내부에는 BSR(Buzz, Squeak, Rattle) 세 가지 유형의 소음이 발생한다. 본 논문에서는 심층 컨볼루션신경망으로 추출한 소음 특징에 기반하여 자동으로 차량 내부의 BSR 소음을 분류하는 분류기를 제안한다. 차량 내부의소음은 전처리 단계에서 STFT(Short-time Fourier Transform) 알고리즘을 사용하여 소음 맵으로 표현된다. 생성된 소음 맵 내부에서 실제 소음의 위치를 정확하게 파악하기 어려운 문제에 대처하기 위해서 슬라이딩 윈도우 방법으로 분할하였다. 본 논문에서는 t-SNE(t-Stochastic Neighbor Embedding) 알고리즘을 사용하여 심층 컨볼루션 신경망 내부 파라미터를 시각화하고 정성적인 방식으로 오분류데이터를 분석하였다. 분류된 데이터의 정량적인 분석을 위해 소음의 종류별 유사도를 SSIM(Structural Similarity Index) 수치에 기반하여 정량화하여 리트랙터의 떨림음이 정상주행음과 가장 유사하다는 것을 밝혔다. 제안하는 방법의 분류기는 기타 기계학습 알고리즘 대비 최고 분류 정확도를 달성하였다(99.15%).

    영어초록

    There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:55 오전