PARTNER
검증된 파트너 제휴사 자료

심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 - (A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models)

22 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2023.02
22P 미리보기
심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 -
  • 미리보기

    서지정보

    · 발행기관 : 한국문헌정보학회
    · 수록지 정보 : 한국문헌정보학회지 / 57권 / 1호 / 93 ~ 114페이지
    · 저자명 : 최성필

    초록

    정보추출은 문헌 내에 존재하는 개체명을 인식함과 동시에 이들 간의 의미적 관계까지도 식별하여 최종적으로 문헌 내에 포함된 의미적 트리플을 자동으로 추출하여 활용할 수 있으므로 문헌에 대한 심층적인 분석과 이해에 많은 도움을 줄 수 있다. 그러나 지금까지 대부분의 정보추출에 대한 연구는 개체명 인식과 관계추출이 개별 연구로 각각 분리되어 진행되었으며, 그 결과 입력 문헌에 대한 정보추출의 최종 출력인 의미적 트리플 추출 성능에 대한 객관적이고 정확한 평가가 제대로 이루어지지 않았다. 이에 본 논문에서는 진료 기록 문헌에 나타나는 개체명과 그들 간의 관계를 트리플 형태로 직접 추출할 수 있는 종단형 정보추출의 2가지 모델인 파이프라인 및 결합형 모델을 구축하는 구체적인 방법론을 제시하고 성능 비교 실험을 진행하였다. 우선 파이프라인 모델은 양방향 GRU-CRFs를 활용한 개체명 인식 모듈과 다중 인코딩 기반 관계추출 모듈로 구현되었고, 결합형 모델을 위해서는 다중 헤드 레이블링 기반의 양방향 GRU-CRFs이 적용되었다. 두 가지 시스템을 바탕으로 진료기록 문헌 내의 개체명과 관계를 모두 태깅하여 구축된 i2b2/VA 2010 데이터셋을 활용한 비교 실험에서 파이프라인 모델의 성능이 5.5%(F-measure) 더 높게 나타났다. 추가적으로, 대규모 신경망 언어모델과 수작업으로 구축된 자질 정보를 활용한 최고 수준의 기존 시스템과의 비교 실험을 통해, 본 논문에서 구현한 종단형 모델의 객관적인 성능 수준을 파악할 수 있었다.

    영어초록

    Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 16일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:34 오전