• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

신경망 기반 텍스트 모델링에 있어 순차적 결합 방법의 한계점과 이를 극복하기 위한 담화 기반의 결합 방법 (A Discourse-based Compositional Approach to Overcome Drawbacks of Sequence-based Composition in Text Modeling via Neural Networks)

5 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2017.12
5P 미리보기
신경망 기반 텍스트 모델링에 있어 순차적 결합 방법의 한계점과 이를 극복하기 위한 담화 기반의 결합 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 23권 / 12호 / 698 ~ 702페이지
    · 저자명 : 이강욱, 한상규, 맹성현

    초록

    자연 언어 처리(Natural Language Processing) 분야에 심층 신경망(Deep Neural Network) 이 소개된 이후, 단어, 문장 등의 의미를 나타내기 위한 분산 표상인 임베딩(Embedding)을 학습하기 위한 연구가 활발히 진행되고 있다. 임베딩 학습을 위한 방법으로는 크게 문맥 기반의 텍스트 모델링 방법과, 기학습된 임베딩을 결합하여 더 긴 텍스트의 분산 표상을 계산하고자 하는 결합 기반의 텍스트 모델링 방법이 있다. 하지만, 기존 결합 기반의 텍스트 모델링 방법은 최적 결합 단위에 대한 고찰 없이 단어를 이용하여 연구되어 왔다. 본 연구에서는 비교 실험을 통해 문서 임베딩 생성에 적합한 결합 기법과 최적 결합 단위에 대해 알아본다. 또한, 새로운 결합 방법인 담화 분석 기반의 결합 방식을 제안하고 실험을 통해 기존의 순차적 결합 기반 신경망 모델 대비 우수성을 보인다.

    영어초록

    Since the introduction of Deep Neural Networks to the Natural Language Processing field, two major approaches have been considered for modeling text. One method involved learning embeddings, i.e. the distributed representations containing abstract semantics of words or sentences, with the textual context. The other strategy consisted of composing the embeddings trained by the above to get embeddings of longer texts. However, most studies of the composition methods just adopt word embeddings without consideration of the optimal embedding unit and the optimal method of composition. In this paper, we conducted experiments to analyze the optimal embedding unit and the optimal composition method for modeling longer texts, such as documents. In addition, we suggest a new discourse-based composition to overcome the limitation of the sequential composition method on composing sentence embeddings.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:56 오후