PARTNER
검증된 파트너 제휴사 자료

피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선 (Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result)

11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2009.05
11P 미리보기
피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회 논문집C / 29권 / 3호 / 115 ~ 125페이지
    · 저자명 : 김영상, 주노아, 박현일, 박솔지

    초록

    지반의 응력이력을 정의하는데 이용되는 선행압밀하중은 일반적으로 일차원 실내압밀실험으로부터 결정되어져 왔으나 피에조콘과 같은 원위치 시험의 관측값을 이용한 이론적인 방법과 경험적인 상관관계를 통한 결정도 가능하다. 최근 선행압밀하중을 결정하기 위한 인공신경망 모델들이 제안된 바 있으며, 기존의 이론적·경험적 선행압밀하중 추정 방법들이 갖는 지역의존성의 문제를 극복하고 예측 정확도 면에서도 크게 개선된 것으로 보고되었다. 그러나 인공신경망 모델은 모델구조와 학습과정에서 초기에 무작위로 부여되는 연결강도에 영향을 받아 예측에 변동성이 존재한다. 본 연구에서는 기존의 피에조콘 결과를 이용한 선행압밀하중 추정 인공신경망 모델이 연약지반에서 선행압밀하중 예측 시 보이는 변동성을 개선하기 위하여 신경망 모델의 구조 최적화를 수행하고 군집신경망 모델을 구축하였다. 제안된 군집신경망 모델을 이용한 예측결과는 기존의 다층신경망 모델 및 이론적·경험적 모델들과 비교되었다. 연구결과, 최적화된 구조를 갖는 다층신경망 모델일지라도 초기 연결강도에 따라 최종 학습 후 예측결과의 변동성이 여전히 존재하나, 다층신경망을 네트워크로 연결하여 제안된 군집신경망 모델은 기존의 다층신경망 모델들이 갖는 초기 연결강도 의존성을 개선하여 다층신경망 모델에 비해 일관성 있으며 보다 정확한 예측이 가능한 것으로 나타났다.

    영어초록

    The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:16 오전