• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대학생들의 중도 탈락 예측을 위한 신경망과 그레디언트 부스팅 머신의 성능 비교 (Performance Comparison of Neural Network and Gradient Boosting Machine for Dropout Prediction of University Students)

10 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2023.08
10P 미리보기
대학생들의 중도 탈락 예측을 위한 신경망과 그레디언트 부스팅 머신의 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 28권 / 8호 / 49 ~ 58페이지
    · 저자명 : 김현규

    초록

    학생들의 중도 탈락은 대학의 재정적 손실 뿐 아니라, 학생 개개인 및 사회적으로도 부정적인영향을 끼친다. 이러한 문제를 해결하기 위해 기계 학습을 이용하여 대학생들의 중도 탈락 여부를 예측하고자 하는 다양한 시도가 이루어지고 있다. 본 논문에서는 대학생들의 중도 탈락 여부를 예측하기 위해 DNN(Deep Neural Network)과 LGBM(Light Gradient Boosting Machine)을 이용한모델을 구현하고 성능을 비교하였다. 학습 데이터로는 서울 소재 중소규모 4년제 대학인 A 대학의 20,050명의 학생을 대상으로 수집된 학적 및 성적 데이터를 학습에 이용하였다. 원본 데이터의140여개의 속성 중 중도 탈락 여부를 나타내는 속성과의 상관계수가 0.1 이상인 속성들만 추출하여 학습하였다. 두 모델의 성능 실험 결과, DNN과 LGBM의 F1-스코어는 0.798과 0.826이었으며, LGBM이 DNN에 비해 2.5% 나은 예측 성능을 보였다.

    영어초록

    Dropouts of students not only cause financial loss to the university, but also have negative impacts on individual students and society together. To resolve this issue, various studies have been conducted to predict student dropout using machine learning. This paper presents a model implemented using DNN (Deep Neural Network) and LGBM (Light Gradient Boosting Machine) to predict dropout of university students and compares their performance. The academic record and grade data collected from 20,050 students at A University, a small and medium-sized 4-year university in Seoul, were used for learning.
    Among the 140 attributes of the collected data, only the attributes with a correlation coefficient of 0.1 or higher with the attribute indicating dropout were extracted and used for learning. As learning algorithms, DNN (Deep Neural Network) and LightGBM (Light Gradient Boosting Machine) were used.
    Our experimental results showed that the F1-scores of DNN and LGBM were 0.798 and 0.826, respectively, indicating that LGBM provided 2.5% better prediction performance than DNN.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:47 오전