• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구 (Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections)

10 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2010.07
10P 미리보기
유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회 논문집D / 30권 / 4호 / 351 ~ 360페이지
    · 저자명 : 김중효, 신재만, 박제진, 하태준

    초록

    2010년 말 현재 우리나라의 자동차등록대수는 1,748만 대에 육박할 정도로 비약적인 증가를 보이고 있다. 자동차의 급격한 증가는 오늘날 우리가 직면한 심각한 사회문제 중 하나인 교통사고를 증가시키고, 이로 인해 인명피해 및 경제적 손실을 초래하고 있다. 이에 본 연구는 유전자 알고리즘과 신경망 이론의 결합에 의한, 향상된 신호교차로 위험도를 예측하는 모형을 개발하여, 장래 교통사고 안전대책 수립시 근간이 되는 기초자료를 제공함으로써, 교통사고를 줄이는데 도움이 되고자 한다. 본 연구에서는, 첫 번째로 교통사고와 교통혼잡이 빈번하게 발생하는 신호교차로를 대상으로 접근로별 교통량과 도로 기하구조 요소를 파악하였고, 교통사고와 교통상충간의 순위상관관계분석을 실시하여 통계적 유의성을 파악하였으며, 교통사고와 교통상충을 적용한 선형회귀모형을 구축하였다. 두 번째로, 유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형은 신호교차로 교통량 및 도로 기하구조 요소, 교통상충의 특성변수를 적용하여 개발하였다. 마지막으로, 신호교차로 교통사고건수 실측값과 개발모형의 예측값에 대한 적합도 분석을 통해 신뢰수준을 검증한 결과, 개발모형의 신뢰도와 정확도가 기존의 모형에 비해 우수한 것으로 나타났다. 결론적으로, 향후 본 연구를 통해 개발된 교통사고위험도 예측모형을 신호교차로 교통안전정책 수립과 교통안전개선사업에 사용할 경우, 전반적으로 교통안전관련사업의 비용/효율성을 극대화할 수 있을 것으로 기대된다.

    영어초록

    In 2010, the number of registered vehicles reached almost at 17.48 millions in Korea. This dramatic increase of vehicles influenced to increase the number of traffic accidents which is one of the serious social problems and also to soar the personal and economic losses in Korea. Through this research, an enhanced intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network will be developed in order to obtain the important data for developing the countermeasures of traffic accidents and eventually to reduce the traffic accidents in Korea. Firstly, this research has investigated the influencing factors of road geometric features on the traffic volume of each approaching for the intersections where traffic accidents and congestions frequently take place and, a linear regression model of traffic accidents and traffic conflicts were developed by examining the relationship between traffic accidents and traffic conflicts through the statistical significance tests. Secondly, this research also developed an intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network through applying the intersection traffic volume, the road geometric features and the specific variables of traffic conflicts. Lastly, this research found out that the developed model is better than the existed forecasting models in terms of the reliability and accuracy by comparing the actual number of traffic accidents and the predicted number of accidents from the developed model. In conclusion, it is expect that the cost/effectiveness of any traffic safety improvement projects can be maximized if this developed intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network use practically at field in the future.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회 논문집D”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:47 오전