PARTNER
검증된 파트너 제휴사 자료

이종의 OCT 기기로부터 생성된 볼륨 데이터로부터 심층 컨볼루션 신경망을 이용한 AMD 진단 (AMD Identification from OCT Volume Data Acquired from Heterogeneous OCT Machines using Deep Convolutional Neural Network)

13 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2018.12
13P 미리보기
이종의 OCT 기기로부터 생성된 볼륨 데이터로부터 심층 컨볼루션 신경망을 이용한 AMD 진단
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 데이타베이스연구 / 34권 / 3호 / 124 ~ 136페이지
    · 저자명 : 권오흠, 정유진, 권기룡, 송하주

    초록

    신경망을 이용하여 OCT 영상을 분석하고 다양한 망막 질환을 자동 진단하는 것에 관한 연구들이 활발하게 이루어지고 있다. 이러한 연구가 현실에 적용되기 위한 하나의 중요한 요건은 학습된 신경망이 학습에 사용된 데이터와는 다른 기기에서 생성된 데이터에 대해서도 성능의 큰 하락 없이 일반화될 수 있어야 한다는 것이다.
    본 논문에서는 심층 CNN을 이용하여 OCT 영상으로부터 노년기황반변성(AMD)을 자동 진단하는 것을 다룬다. 하나의 OCT 기기로부터 획득한 데이터 셋을 이용하여 신경망을 학습시킨 후 다른 OCT 기기로부터 생산된 이미지를 테스트한 결과 상당한 성능의 하락을 관찰할 수 있었다. 이러한 성능의 하락을 방지하기 위해서 OCT 이미지를 정규화 하는 기법을 제안하고 실험을 통해 그 효과를 분석하였다. 제안한 기법은 OCT 이미지를 분할하여 망막에 해당하는 영역을 찾아낸 후 이미지 내에서 망막 영역이 수평에 가까운 기울기를 가지도록 정렬(align)하여 형태적인 측면에서 OCT 이미지를 정규화 하는 것을 목적으로 한다. 실험을 통하여 제안한 기법이 이종의 기기에서 생성된 OCT 이미지로부터 AMD를 자동진단 하는데 있어서 상당한 성능의 향상을 달성함을 보였다.

    영어초록

    There have been active research activities to use neural networks to analyze OCT images and make medical decisions. One requirement for these approaches to be promising solutions is that the trained network must be generalized to new devices without a substantial loss of performance. In this paper, we use a deep convolutional neural network to distinguish AMD from normal patients.
    The network was trained using a data set generated from an OCT device. We observed a significant performance degradation when it was applied to a new data set obtained from a different OCT device. To overcome this performance degradation, we propose an image normalization method which performs segmentation of OCT images to identify the retina area and aligns images so that the retina region lies horizontally in the image. We experimentally evaluated the performance of the proposed method. The experiment confirmed a significant performance improvement of our approach.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“데이타베이스연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 10일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:23 오후