• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한컨볼루션 신경망 기법 적용 (The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images)

11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2018.03
11P 미리보기
사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한컨볼루션 신경망 기법 적용
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 37권 / 2호 / 118 ~ 128페이지
    · 저자명 : 김정문, 최지웅, 권혁종, 오래근, 손수욱

    초록

    본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.

    영어초록

    In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:18 오후