PARTNER
검증된 파트너 제휴사 자료

지반-상부 구조물 효과를 고려한 인공신경망 기반 지진 응답 예측 모델 개발 (Development of Artificial Neural Network Model for Prediction of Seismic Response of Building with Soil-structure Interaction)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.08
9P 미리보기
지반-상부 구조물 효과를 고려한 인공신경망 기반 지진 응답 예측 모델 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국지반공학회
    · 수록지 정보 : 한국지반공학회논문집 / 36권 / 8호 / 5 ~ 13페이지
    · 저자명 : 원종묵, 신지욱

    초록

    인공신경망(ANN) 지진응답 예측모델 구성을 위해 다양한 지진파 및 지반 조건 하에서 구조물의 최대변위 및 최대전단력 데이터베이스 구축이 필요하다. 하지만 3차원 컴퓨터 해석을 활용한 데이터베이스 구축은 많은 시간 및 인력, 비용을 발생시킨다. 본 연구에서는 주어진 지반의 포아송비와 전단파 속도에 대하여 건물의 지진응답을 예측할 수 있는 ANN 모델 개발 프레임워크를 소개하였다. 데이터베이스 구축에는 지반-상부 구조물 효과를 고려할 수 있는 간단한 단자유도 모델을 이용하였고 개발된 ANN 모델의 정확도를 결정계수(R2)를 통하여 논의하였다. 또한 구축된 데이터베이스의 백분위 90~100에서 ANN 모델을 구성하고 결정계수를 통해 각 백분위에서 ANN 모델의 정확도에 대하여 논의하였다.

    영어초록

    Constructing the maximum displacement and shear force database for the seismic performance of building with soil-structure interaction under varied earthquake scenarios and geotechnical conditions is critical in developing the neural network-based prediction models. However, using the available 3D FEM-based computer simulation techniques causes high computation costs in developing the database. This study introduces the framework of developing the artificial neural network (ANN) model to predict the seismic performance of building at given Poisson’s ratio and shear wave velocity of soil. The simple Single-Degree-Of-Freedom system was used to develop the database and the performance of the developed neural network model is discussed through the evaluated coefficient of determination (R2). In addition, ANN models were developed for 90~100% percentile of the database to assess the accuracy of the developed ANN models in each percentile.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:25 오후