• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

심층신경망 기법을 이용한 재열 가스터빈 입구온도 예측모델에 관한 연구 (Study on the prediction model of reheat gas turbine inlet temperature using deep neural network technique)

12 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2023.10
12P 미리보기
심층신경망 기법을 이용한 재열 가스터빈 입구온도 예측모델에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국전자통신학회
    · 수록지 정보 : 한국전자통신학회 논문지 / 18권 / 5호 / 841 ~ 852페이지
    · 저자명 : 한영복, 김성호, 김변곤

    초록

    국내 전력계통의 주파수 조정용 발전기로 사용되고 있는 가스터빈은 탄소중립 정책과 더불어 신속한 기동·정지 및 높은 열효율 등으로 인해 이용률이 증가하고 있다. 가스터빈은 고온의 화염을 이용하여 터빈을 회전시키기 때문에 터빈 입구온도가 기기의 성능과 수명을 좌우하는 핵심요소로 작용하고 있다. 하지만 입구온도는 직접적인 측정이 불가능함에 따라 제작사가 산출한 온도를 이용하거나, 현장 경험을 토대로 하여 예측된 온도를 적용하고 있어서 가스터빈의 안정적인 운전 및 유지관리에 많은 어려움을 겪고 있다. 이에 본 연구에서는 인공신경망에서 많이 사용되고 있는 DNN(Deep Neural Network) 기반으로 하는 재열 가스터빈의 입구온도를 예측할 수 있는 모델을 제시하고 실측 데이터를 기반으로 제안된 DNN의 성능을 검증하고자 한다.

    영어초록

    Gas turbines, which are used as generators for frequency regulation of the domestic power system, are increasing in use due to the carbon-neutral policy, quick startup and shutdown, and high thermal efficiency. Since the gas turbine rotates the turbine using high-temperature flame, the turbine inlet temperature is acting as a key factor determining the performance and lifespan of the device. However, since the inlet temperature cannot be directly measured, the temperature calculated by the manufacturer is used or the temperature predicted based on field experience is applied, which makes it difficult to operate and maintain the gas turbine in a stable manner. In this study, we present a model that can predict the inlet temperature of a reheat gas turbine based on Deep Neural Network (DNN), which is widely used in artificial neural networks, and verify the performance of the proposed DNN based on actual data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:50 오전