• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

영상 품질 및 전송효율 최적화를 위한 심층신경망 기반 영상전송기법 (Video Transmission Technique based on Deep Neural Networks for Optimizing Image Quality and Transmission Efficiency)

11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.07
11P 미리보기
영상 품질 및 전송효율 최적화를 위한 심층신경망 기반 영상전송기법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 25권 / 4호 / 609 ~ 619페이지
    · 저자명 : 이종만, 김기훈, 박현, 최증원, 김경우, 배성호

    초록

    고품질 비디오 스트리밍 요구에 따라 제한된 대역폭에서 높은 전송률이 필요하고, 트래픽 혼재 상황이 더 발생한다. 특히 실시간 영상 서비스를 제공 시 패킷 손실 및 비트 오류 확률이 더 크게 증가한다. 이러한 문제를 해결하기 위해 실시간 서비스 품질향상을 위한 방법으로 FEC 기술의 한 종류인 랩터 코드가 어플리케이션 영역에서 활발히 사용되고 있다. 본 논문에서는 랩터 코드를 활용하여 유사한 수준의 화질에서 전송 효율을 높이기 위한 다양한 심층 신경망(Deep Neural Network, DNN) 기반 영상전송 파라미터를 결정하는 방법을 제안한다. 제안된 신경망은 패킷 손실율(Packet Loss Rate), 비디오 인코딩 속도 및 전송속도를 입력으로 사용하고 랩터 FEC 파라미터와 패킷 크기를 출력으로 한다. 제안한 방법은 기존 멀티미디어 전송 기법과 유사한 수준의 PSNR(Peak Signal-to-Noise Ratio)에서 전송 효율을 최적화하여 평균 1.2% 높은 스루풋(throughput)을 보였다.

    영어초록

    In accordance with a demand for high quality video streaming, it needs high data rate in limited bandwidth and more traffic congestion occurs. In particular, when providing real time video service, packet loss rate and bit error probability increase significantly. To solve these problems, a raptor code, which is one of FEC(Forward Error Correction) techniques, is pervasively used in the application layers as a method for improving real-time service quality. In this paper, we propose a method of determining image transmission parameters based on various deep neural networks to increase transmission efficiency at a similar level of image quality by using raptor codes. The proposed neural network uses the packet loss rate, video encoding rate and data rate as inputs, and outputs raptor FEC parameters and packet sizes. The results of the proposed method present that the throughput is 1.2% higher than that of the existing multimedia transmission technique by optimizing the transmission efficiency at a PSNR(Peak Signal-to-Noise Ratio) level similar to that of the existing technique.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:53 오전