• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정 (Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2019.07
9P 미리보기
LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 38권 / 4호 / 433 ~ 441페이지
    · 저자명 : 주형길, 이기승

    초록

    본 논문에서는 입 주변에 방사한 초음파 신호가 반사되어 돌아올 때 발생하는 초음파 도플러 신호를 LSTM (Long Short Term Memory) 순환 신경망 (Recurrent Neural Networks, RNN)을 이용해 음성 패러미터를 추정하는방법을 소개하고 다층 퍼셉트론 (Multi-Layer Perceptrons, MLP) 신경망을 이용한 방법과 성능 비교를 하였다. 본 논문에서는 LSTM 순환 신경망을 이용해 초음파 도플러 신호로부터 음성 신호의 푸리에 변환 계수를 추정하였다. LSTM 순환 신경망을 학습하기 위한 입력 및 기준값으로 초음파 도플러 신호와 음성 신호로부터 각각 추출된 멜 주파수 대역별 에너지 로그값과 푸리에 변환 계수가 사용되었다. 테스트 데이터를 이용한 실험을 통해 LSTM 순환 신경망과 MLP의 성능을 평가, 비교하였고 척도로는 평균 제곱근 오차(Root Mean Squared Error, RMSE)가 사용되었다.각실험의 RMSE는 각각 0.5810, 0.7380로 나타났다. 약 0.1570 차이로 LSTM 순환 신경망을 이용한 방법의 성능 우세한 것으로 확인되었다.

    영어초록

    In this paper, a method of estimating speech parameters for ultrasonic Doppler signals reflected from the articulatory muscles using LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks) was introduced and compared with the method using MLP (Multi-Layer Perceptrons). LSTM RNN were used to estimate the Fourier transform coefficients of speech signals from the ultrasonic Doppler signals. The log energy value of the Mel frequency band and the Fourier transform coefficients, which were extracted respectively from the ultrasonic Doppler signal and the speech signal, were used as the input and reference for training LSTM RNN.
    The performance of LSTM RNN and MLP was evaluated and compared by experiments using test data, and the RMSE (Root Mean Squared Error) was used as a measure. The RMSE of each experiment was 0.5810 and 0.7380, respectively. The difference was about 0.1570, so that it confirmed that the performance of the method using the LSTM RNN was better.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 06일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:39 오후