• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측 (Predicting Steel Structure Product Weight Ratios Using Large Language Model-Based Neural Networks)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2024.02
8P 미리보기
대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국전자통신학회
    · 수록지 정보 : 한국전자통신학회 논문지 / 19권 / 1호 / 119 ~ 126페이지
    · 저자명 : 박종혁, 유상현, 한수희, 김경준

    초록

    건물 정보 모델(BIM: Building Information Model)은 관련 기업의 개별화된 프로젝트와 학습 데이터양 부족으로 인해 인공지능(AI: Artificial Intelligence) 기반 BIM 애플리케이션 개발이 쉽지 않다. 본 연구에서는 데이터가 제한적인 상황에서 BIM의 강구조물 부재 중량비를 예측하기 위해 사전 학습이 된 대형 언어 모델을 기반으로 신경망을 학습하는 방법을 제시하고 실험하였다. 제안된 모델은 대형 언어 모델을 활용하여 BIM에 내재하는 데이터 부족 문제를 극복할 수 있어 데이터의 양이 부족한 상황에서도 성공적인 학습이 가능하며 대형 언어 모델과 연계된 신경망을 활용하여 자연어와 더불어 숫자 데이터까지 처리할 수 있다. 실험 결과는 제안된 대형 언어 모델 기반 신경망이 기존 소형 언어 모델 기반보다 높은 정확도를 보였다. 이를 통해, 대형 언어 모델이 BIM에 효과적으로 적용될 수 있음이 확인되었으며, 향후 건물 사고 예방 및 건설 비용의 효율적인 관리가 기대된다.

    영어초록

    In building information model (BIM), it is difficult to train an artificial intelligence (AI) model due to the lack of sufficient data about individual projects in an architecture firm. In this paper, we present a methodology to correctly train an AI neural network model based on a large language model (LLM) to predict the steel structure product weight ratios in BIM. The proposed method, with the aid of the LLM, can overcome the inherent problem of limited data availability in BIM and handle a combination of natural language and numerical data. The experimental results showed that the proposed method demonstrated significantly higher accuracy than methods based on a smaller language model. The potential for effectively applying large language models in BIM is confirmed, leading to expectations of preventing building accidents and efficiently managing construction costs.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:13 오전