PARTNER
검증된 파트너 제휴사 자료

인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정 (Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse)

6 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2018.04
6P 미리보기
인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 7권 / 4호 / 129 ~ 134페이지
    · 저자명 : 김상엽, 박경섭, 류근호

    초록

    최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 10000℃/h일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.

    영어초록

    Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is 10000℃/h. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:47 오전