PARTNER
검증된 파트너 제휴사 자료

신경망을 이용한 파랑하 관로주변의 세굴심 예측 (Prediction of the Scour Depth around the Pipeline Exposed to Waves using Neural Networks)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2013.05
8P 미리보기
신경망을 이용한 파랑하 관로주변의 세굴심 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국지반환경공학회
    · 수록지 정보 : 한국지반환경공학회 논문집 / 14권 / 5호 / 15 ~ 22페이지
    · 저자명 : 김경호, 조준영, 이호진, 오현식

    초록

    해저관로는 중요한 해안구조물의 하나로 연안 및 해양개발을 위해 폭넓게 사용되고 있다. 해저관로는 해저지반의 상태에 따라 파와 흐름으로 인해 주변에 세굴이 발생한다. 이로 인해 관이 뜨거나 가라앉는 경우가 발생하여 관의 내구성에 악영향을 미친다. 최근에는 해양환경에서 구조물과 여러 요인들의 복잡한 상호작용에 의한 세굴에 대해 많은 연구들이 이루어졌지만, 아직까지 세굴을 정확히 예측하는 것은 어렵다. 본 연구에서는 신경망 기법으로 관로의 세굴심 자료를 분석하여 세굴심을 예측하였다. 학습을 위해 역전파 알고리즘을 사용하였다. 신경망 모델의 학습과 검증에 총 58개의 모형실험 자료들이 사용되었다. 또한 동일한 데이터에 대해 회귀분석 기법을 통한 예측과 비교 분석하여 세굴심 예측을 위한 신경망 기법의 적용성을 검토하였다.

    영어초록

    The submarine pipe, which is one of the most important coastal structures, is widely used in the development of coastal and ocean engineering. The scour of the submarine pipe occurs due to the wave and the current according to the state of the sea bed. The scour affects the submarine pipe and causes it to undergo settlement and fatigue. It is difficult to predict the local scour under complicated and various conditions of the coastal environment, even though many researches on the scour of the submarine pipe have been studied in recent years. This study analyzed the scour depth around a submarine pipe by using the Neural Network technique. The back-propagation algorithms was used to train the Neural Network. The 58 simulating experimental data for the performance and validation of the Neural Network technique were analyzed in this study. Then, the regression analysis for the same data was performed in this study to predict and compare with the Neural Network technique for the scour depth.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지반환경공학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:05 오후