• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법 (Recurrent Neural Network Based Spectrum Sensing Technique for Cognitive Radio Communications)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.06
9P 미리보기
인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 24권 / 6호 / 759 ~ 767페이지
    · 저자명 : 정태윤, 정의림

    초록

    본 논문에서는 인지 무선 통신을 위한 새로운 순환 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주사용자에 대한 정보가 전혀 없는 상황에서 에너지 검출을 통해 신호 존재 유무를 판단한다. 제안 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링 후 이 신호의 FFT (fast Fourier transform)를 통해 주파수 스펙트럼으로 변환한다. 이 스펙트럼 신호는 채널 대역폭 단위로 자른 후 순환 신경망에 입력하여 해당 채널이 사용 중인지 비어있는지 판정한다. 제안하는 기법의 성능은 컴퓨터 모의실험을 통해 확인하는데 그 결과에 따르면 기존 문턱값 기반 기법보다 2 [dB] 이상 우수하며 합성곱 신경망 기법과 유사한 성능을 보인다. 또한, 실제 실내환경에서 실험도 수행하는데 이 결과에 따르면 제안하는 기법이 기존 문턱값 기반 방식 및 합성곱 신경망 방식보다 4 [dB] 이상 우수한 성능을 보인다.

    영어초록

    This paper proposes a new Recurrent neural network (RNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of primary user’s signal without any prior information of the primary users. The method performs high-speed sampling by considering the whole sensing bandwidth and then converts the signal into frequency spectrum via fast Fourier transform (FFT). This spectrum signal is cut in sensing channel bandwidth and entered into the RNN to determine the channel vacancy. The performance of the proposed technique is verified through computer simulations. According to the results, the proposed one is superior to more than 2 [dB] than the existing threshold-based technique and has similar performance to that of the existing Convolutional neural network (CNN) based method. In addition, experiments are carried out in indoor environments and the results show that the proposed technique performs more than 4 [dB] better than both the conventional threshold-based and the CNN based methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 20일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:33 오전