• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

인공 신경망을 이용한 전기 아크 신호 검출 (Electrical Arc Detection using Artificial Neural Network)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2019.09
11P 미리보기
인공 신경망을 이용한 전기 아크 신호 검출
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 24권 / 5호 / 791 ~ 801페이지
    · 저자명 : 이상익, 강석우, 김태원, 이승수, 김만배

    초록

    전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 다양한 불규칙 아크 파형 때문에, 실제 환경에서는 아크 성능이 저하되는 문제가 있다. 따라서, 기존의 부족한 특징 데이터를 증가시켜, 성능을 개선하는 것이 요구된다. 본 논문에서는 입력신호를 변분 모드 분할을 통해 원신호를 분할한 후 통계적 특징을 추출한다. 변분 모드 분할으로부터 추출한 통계적 특징의 성능이 원신호로부터 얻은 특징보다 개선된 성능을 얻는다. 아크 분류기로 인공 신경망을 이용하고, 14,000개의 학습 데이터에 적용한 결과 VMD의 사용이 약 4%의 아크 검출 성능을 높혔다.

    영어초록

    The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. Therefore, there is a need to develop a method that could increase the feature dimension, thereby improving the detection performance. In this paper, we use variational mode decomposition (VMD) to obtain multiple decomposed signals and then extract statistical features from them. The features from VMD outperform those from no-VMD in terms of detection performance. Further, artificial neural network is employed as an arc classifier. Experiments validated that the use of VMD improves the classification accuracy by up to 4 percent, based on 14,000 training data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:05 오후