• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

양방향 LSTM 순환신경망 기반 주가예측모델 (Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network)

5 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2018.04
5P 미리보기
양방향 LSTM 순환신경망 기반 주가예측모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 11권 / 2호 / 204 ~ 208페이지
    · 저자명 : 주일택, 최승호

    초록

    본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.

    영어초록

    In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:53 오전