• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

돌연변이 연산 기반 효율적 심층 신경망 모델 (A Deep Neural Network Model Based on a Mutation Operator)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2017.12
8P 미리보기
돌연변이 연산 기반 효율적 심층 신경망 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 6권 / 12호 / 573 ~ 580페이지
    · 저자명 : 전승호, 문종섭

    초록

    심층 신경망은 많은 노드의 층을 쌓아 만든 거대한 신경망이다. 심층 신경망으로 대표되는 딥 러닝은 오늘날 많은 응용 분야에서 괄목할만한 성과를 거두고 있다. 하지만 다년간의 연구를 통해 심층 신경망에 대한 다양한 문제점이 식별되고 있다. 이 중 일반화는 가장 널리 알려진 문제점들 중 하나이며, 최근 연구 결과인 드롭아웃은 이러한 문제를 어느 정도 성공적으로 해결하였다. 드롭아웃은 노이즈와 같은 역할을 하여 신경망이 노이즈에 강건한 데이터 표현형을 학습할 수 있도록 하는데, 오토인코더와 관련된 연구에서 이러한 효과가 입증되었다. 하지만 드롭아웃은 빈번한 난수 연산과 확률연산으로 인해 신경망의 학습 시간이 길어지고, 신경망 각 계층의 데이터 분포가 크게 변화하여 작은 학습율을 사용해야하는 단점이 있다. 본 논문에서는 돌연변이 연산을 사용하여 비교적 적은 횟수의 연산으로 드롭아웃과 동등 이상의 성능을 나타내는 모델을 제시하고, 실험을 통하여 논문에서 제시한 방법이 드롭아웃 방식과 동등한 성능을 보임과 동시에 학습 시간 문제를 개선함을 보인다.

    영어초록

    Deep Neural Network(DNN) is a large layered neural network which is consisted of a number of layers of non-linear units. Deep Learning which represented as DNN has been applied very successfully in various applications. However, many issues in DNN have been identified through past researches. Among these issues, generalization is the most well-known problem. A Recent study, Dropout, successfully addressed this problem. Also, Dropout plays a role as noise, and so it helps to learn robust feature during learning in DNN such as Denoising AutoEncoder. However, because of a large computations required in Dropout, training takes a lot of time. Since Dropout keeps changing an inter-layer representation during the training session, the learning rates should be small, which makes training time longer. In this paper, using mutation operation, we reduce computation and improve generalization performance compared with Dropout. Also, we experimented proposed method to compare with Dropout method and showed that our method is superior to the Dropout one.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:30 오전