• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축 (Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.12
8P 미리보기
구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축
  • 미리보기

    서지정보

    · 발행기관 : (사)한국스마트미디어학회
    · 수록지 정보 : 스마트미디어저널 / 9권 / 4호 / 144 ~ 151페이지
    · 저자명 : 강승식, 원혜진, 이민행

    초록

    모바일 환경에서 의사소통은 SMS 문자로 이루어진다. SMS 문자에서 사용되는 어휘들은 일반적인 한국어 문어체 문장에서 사용되는 어휘들과 다른 부류의 어휘들이 사용될 것으로 예상할 수 있다. 예를 들어, 일반적인 문어체의 경우 문장의 시작이나 끝맺음이 올바르고 문장의 구성요소가 잘 갖추어졌지만, SMS 문자 말뭉치의 경우 구성요소를 생략 및 간략한 표현으로 대체하는 경우가 많다. 이러한 어휘 사용 특성을 분석하기 위하여, 기존에 구축된 구어체 말뭉치와 문어체 말뭉치를 사용한다. 실험에서는 구어체 말뭉치인 SMS 문자 말뭉치와 네이버 영화평 말뭉치, 그리고 문어체 말뭉치인 한국어 문어체 원시 말뭉치의 어휘 사용 특성을 비교-분석한다. 말뭉치별 어휘 비교 및 분석을 위하여 품사 태그 형용사(VA)를 기준으로 하였고, 공연강도를 측정하기 위해 변별적 공연어휘소 분석 방법론을 사용하였다. 그 결과 ‘좋-’, ‘죄송하-’, ‘즐겁-’ 등 감정표현 형용사들이 SMS 문자 말뭉치에서 선호되는 반면, 네이버 영화평 말뭉치에서는 평가 표현과 관련된 형용사들이 선호되는 것을 확인할 수 있었다. 이러한 과정에서 추출된 공연강도가 높은 형용사를 기준으로 감정어휘 사전을 자동 구축하기 위하여 단어 임베딩 기법을 사용하였으며, 총 343,603개의 감성어휘를 자동 구축하였다.

    영어초록

    In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“스마트미디어저널”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 07일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:54 오후