• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

지하철역사 에너지성능 평가를 위한 클러스터링 분석기법을 활용한 지하철역사 대표모델 선정에 관한 연구 (A Study on the Selection of Representative Models of Subway Stations Using Clustering Analysis Techniques for Energy Performance Evaluation of Subway Stations)

7 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2022.10
7P 미리보기
지하철역사 에너지성능 평가를 위한 클러스터링 분석기법을 활용한 지하철역사 대표모델 선정에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한전기학회
    · 수록지 정보 : 전기학회논문지 / 71권 / 10호 / 1427 ~ 1433페이지
    · 저자명 : 신승권, 안승호

    초록

    In order to realize the government's plan to increase zero energy early and play a leading role in the low carbonization of railway facilities, Since 2025, the National Railroad Corporation has established a Zero Energy Roadmap for railway stations to promote zero energy building certification. However, currently, standards and tools for evaluating various railway history, including subways, are insufficient in Korea. In particular, railway history has characteristics that are distinct from general buildings, such as the presence of peak loads, continuous erosion, and the possession of safety and functional elements that must be equipped Accordingly, an alternative is needed to overcome the limitations of existing domestic energy performance evaluation tools developed for general building evaluation. Therefore, this paper uses the clustering technique as the first step to develop a decision-making tool that presents the energy performance evaluation and improvement direction of railway history It can represent the characteristics of subway history. In order to select a representative model, data collection and clustering analysis of all 291 subway stations in the Seoul area were performed using Open Data provided by the public data portal. K-means and GMM algorithms were used as clustering analysis methods. As a result of clustering analysis, the K-means algorithm was difficult to use as a result of classification because the data columns were diverse and were not in the form of circular distribution by cluster. Compared to K-means, GMM algorithms can significantly distinguish characteristics such as area, completion year, and platform type the results were shown.
    The representative standard stations selected based on the results of GMM clustering were Konkuk University Station (Line 2), Suraksan Station, and Hongdae Station. After that, through simulation of representative models and multiple regression analysis using results, the standard model is developed and used as a tool for initial decision-making such as zero energy construction plan and remodeling plan for subway stations.

    영어초록

    In order to realize the government's plan to increase zero energy early and play a leading role in the low carbonization of railway facilities, Since 2025, the National Railroad Corporation has established a Zero Energy Roadmap for railway stations to promote zero energy building certification. However, currently, standards and tools for evaluating various railway history, including subways, are insufficient in Korea. In particular, railway history has characteristics that are distinct from general buildings, such as the presence of peak loads, continuous erosion, and the possession of safety and functional elements that must be equipped Accordingly, an alternative is needed to overcome the limitations of existing domestic energy performance evaluation tools developed for general building evaluation. Therefore, this paper uses the clustering technique as the first step to develop a decision-making tool that presents the energy performance evaluation and improvement direction of railway history It can represent the characteristics of subway history. In order to select a representative model, data collection and clustering analysis of all 291 subway stations in the Seoul area were performed using Open Data provided by the public data portal. K-means and GMM algorithms were used as clustering analysis methods. As a result of clustering analysis, the K-means algorithm was difficult to use as a result of classification because the data columns were diverse and were not in the form of circular distribution by cluster. Compared to K-means, GMM algorithms can significantly distinguish characteristics such as area, completion year, and platform type the results were shown.
    The representative standard stations selected based on the results of GMM clustering were Konkuk University Station (Line 2), Suraksan Station, and Hongdae Station. After that, through simulation of representative models and multiple regression analysis using results, the standard model is developed and used as a tool for initial decision-making such as zero energy construction plan and remodeling plan for subway stations.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:04 오전