• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링 (GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System)

8 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2011.11
8P 미리보기
협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 16권 / 11호 / 17 ~ 24페이지
    · 저자명 : 최자현, 하인애, 홍명덕, 조근식

    초록

    협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 아이템을 추천한다. 그러나 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 아이템이 피드백 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 영화 추천 시스템에서의 사용자 클러스터링의 재구축 시간을 단축시키기 위해서 빈발 패턴 네트워크를 이용하여 사용자가 선호하는 장르 패턴을 추출하고, 추출된 패턴을 통해 사용자 클러스터링을 구축한다. 구축된 사용자 클러스터링을 협업적 여과에 적용하여 사용자에게 영화를 추천한다. 사용자 정보가 피드백 될 때, 전통적 협업적 여과는 사용자 클러스터링을 재구축하기 위해 모든 이웃 사용자를 재탐색하여 클러스터링 한다. 하지만 빈발 패턴 네트워크를 이용하여 장르 패턴 기반의 사용자 클러스터링을 적용한 협업적 여과는 사용자 클러스터링을 재구축시 사용자 탐색 공간을 국한시킴으로써 탐색 시간을 줄일 수 있다. 제안하는 장르 패턴 기반의 사용자 클러스터링을 통해 사용자 정보가 피드백 된 후 사용자 클러스터를 재구축시 소요되는 시간을 줄일 수 있고, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

    영어초록

    Collaborative filtering system is the clustering about user is built and then based on that clustering results will recommend the preferred item to the user. However, building user clustering is time consuming and also once the users evaluate and give feedback about the film then rebuilding the system is not simple. In this paper, genre pattern of movie recommendation systems is being used and in order to simplify and reduce time of rebuilding user clustering. A Frequent pattern networks is used and then extracts user preference genre patterns and through that extracted patterns user clustering will be built. Through built the clustering for all neighboring users to collaborative filtering is applied and then recommends movies to the user. When receiving user information feedback, traditional collaborative filtering is to rebuild the clustering for all neighbouring users to research and do the clustering . However by using frequent pattern Networks, through user clustering based on genre pattern, collaborative filtering is applied and when rebuilding user clustering inquiry limited by search time can be reduced. After receiving user information feedback through proposed user clustering based on genre pattern , the time that need to spent on re-establishing user clustering can be reduced and also enable the possibility of traditional collaborative filtering systems and recommendation of a similar performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:53 오전