• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류 (Efficient QRS Detection and PVC(Premature Ventricular Contraction) Classification based on Profiling Method)

7 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2013.03
7P 미리보기
효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 17권 / 3호 / 705 ~ 711페이지
    · 저자명 : 조익성, 권혁숭

    초록

    심전도 신호의 QRS 영역은 심장의 질환을 판단하는 중요한 자료로 쓰이는데, 여러 종류의 잡음으로 인해 이를 분석하는데 어려움을 준다. 또한 일반인들의 건강상태를 지속적으로 모니터링 하는 헬스케어 시스템에서는 신호의 실시간 처리가 필요하다. 그리고 생체신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단 규칙에 따라 진단을 수행함으로써 성능하락이 나타날 수밖에 없다. 이러한 문제점을 해결하기 위해서는 최소한의 연산량으로 QRS를 검출하고 환자의 특성에 맞게 부정맥을 분류할 수 있는 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 형태연산을 통한 효율적인 QRS 검출과 개인별 정상신호 분류를 위해 해쉬 함수를 적용하여 프로파일링 하였으며, 검출된 QRS 폭과 RR 간격을 이용하여 심실조기수축(PVC)을 분류하는 알고리즘을 개발하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 통해 기존 방법과 부정맥 분류 성능을 비교하였다. 성능평가 결과, R파는 평균 99.77%, 정상 신호 분류에 대한 에러율은 0.65%, PVC는 각각 93.29%로 기존 방법에 비해 약 5% 우수하게 나타났다.

    영어초록

    QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS wave using minimal computation and classifies PVC by analyzing the persons’s physical condition and/or environment is needed. Thus, efficient QRS detection and PVC classification based on profiling method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. Also, we applied profiling method to classify each patient’s normal cardiac behavior through hash function. The performance of R wave detection, normal beat and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 0.65% in normal beat classification error and 93.29% in PVC classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:49 오후