• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

중소기업 프로파일링 분석을 통한 기술유출 방지 및 보호모형 연구 (A Study on Empirical Model for the Prevention and Protection of Technology Leakage through SME Profiling Analysis)

21 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2018.03
21P 미리보기
중소기업 프로파일링 분석을 통한 기술유출 방지 및 보호모형 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보시스템학회
    · 수록지 정보 : 정보시스템연구 / 27권 / 1호 / 171 ~ 191페이지
    · 저자명 : 유인진, 박도형

    초록

    Purpose Corporate technology leakage is not only monetary loss, but also has a negative impact on the corporate image and further deteriorates sustainable growth. In particular, since SMEs are highly dependent on core technologies compared to large corporations, loss of technology leakage threatens corporate survival. Therefore, it is important for SMEs to "prevent and protect technology leakage".
    With the recent development of data analysis technology and the opening of public data, it has become possible to discover and proactively detect companies with a high probability of technology leakage based on actual company data. In this study, we try to construct profiles of enterprises with and without technology leakage experience through profiling analysis using data mining techniques. Furthermore, based on this, we propose a classification model that distinguishes companies that are likely to leak technology.
    Design/methodology/approach This study tries to develop the empirical model for prevention and protection of technology leakage through profiling method which analyzes each SME from the viewpoint of individual.
    Based on the previous research, we tried to classify many characteristics of SMEs into six categories and to identify the factors influencing the technology leakage of SMEs from the enterprise point of view. Specifically, we divided the 29 SME characteristics into the following six categories: 'firm characteristics', 'organizational characteristics', 'technical characteristics', 'relational characteristics', 'financial characteristics', and 'enterprise core competencies'. Each characteristic was extracted from the questionnaire data of 'Survey of Small and Medium Enterprises Technology’ carried out annually by the Government of the Republic of Korea. Since the number of SMEs with experience of technology leakage in questionnaire data was significantly smaller than the other, we made a 1: 1 correspondence with each sample through mixed sampling. We conducted profiling of companies with and without technology leakage experience using decision-tree technique for research data, and derived meaningful variables that can distinguish the two. Then, empirical model for prevention and protection of technology leakage was developed through discriminant analysis and logistic regression analysis.
    Findings Profiling analysis shows that technology novelty, enterprise technology group, number of intellectual property registrations, product life cycle, technology development infrastructure level(absence of dedicated organization), enterprise core competency(design) and enterprise core competency(process design) help us find SME’s technology leakage. We developed the two empirical model for prevention and protection of technology leakage in SMEs using discriminant analysis and logistic regression analysis, and each hit ratio is 65%(discriminant analysis) and 67%(logistic regression analysis).

    영어초록

    Purpose Corporate technology leakage is not only monetary loss, but also has a negative impact on the corporate image and further deteriorates sustainable growth. In particular, since SMEs are highly dependent on core technologies compared to large corporations, loss of technology leakage threatens corporate survival. Therefore, it is important for SMEs to "prevent and protect technology leakage".
    With the recent development of data analysis technology and the opening of public data, it has become possible to discover and proactively detect companies with a high probability of technology leakage based on actual company data. In this study, we try to construct profiles of enterprises with and without technology leakage experience through profiling analysis using data mining techniques. Furthermore, based on this, we propose a classification model that distinguishes companies that are likely to leak technology.
    Design/methodology/approach This study tries to develop the empirical model for prevention and protection of technology leakage through profiling method which analyzes each SME from the viewpoint of individual.
    Based on the previous research, we tried to classify many characteristics of SMEs into six categories and to identify the factors influencing the technology leakage of SMEs from the enterprise point of view. Specifically, we divided the 29 SME characteristics into the following six categories: 'firm characteristics', 'organizational characteristics', 'technical characteristics', 'relational characteristics', 'financial characteristics', and 'enterprise core competencies'. Each characteristic was extracted from the questionnaire data of 'Survey of Small and Medium Enterprises Technology’ carried out annually by the Government of the Republic of Korea. Since the number of SMEs with experience of technology leakage in questionnaire data was significantly smaller than the other, we made a 1: 1 correspondence with each sample through mixed sampling. We conducted profiling of companies with and without technology leakage experience using decision-tree technique for research data, and derived meaningful variables that can distinguish the two. Then, empirical model for prevention and protection of technology leakage was developed through discriminant analysis and logistic regression analysis.
    Findings Profiling analysis shows that technology novelty, enterprise technology group, number of intellectual property registrations, product life cycle, technology development infrastructure level(absence of dedicated organization), enterprise core competency(design) and enterprise core competency(process design) help us find SME’s technology leakage. We developed the two empirical model for prevention and protection of technology leakage in SMEs using discriminant analysis and logistic regression analysis, and each hit ratio is 65%(discriminant analysis) and 67%(logistic regression analysis).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:04 오후