• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈 (The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring)

24 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2021.12
24P 미리보기
광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈
  • 미리보기

    서지정보

    · 발행기관 : 한국농림기상학회
    · 수록지 정보 : 한국농림기상학회지 / 23권 / 4호 / 198 ~ 221페이지
    · 저자명 : 양현영, 강민석, 김준, 류다운, 김수진, 천정화, 임종환, 박찬우, 윤순진

    초록

    1960–70년대 대규모 산림녹화 이후에 한국의 산림은 점차 노령화되고 있다. 노령림의 순 CO2 교환은 이론적으로 중립에 가깝지만, 교란이나 관리에 의해 CO2 흡원 또는 발원이 될 수 있다. 본 연구는 한국의 광릉 낙엽활엽수 노령림(GDK)의 CO2 수지 역학을 이해함으로써, 다음 두 가지 질문에 답하고자 하였다: (1) 보전되고 있는 GDK는 과연 이론적으로 알려져 있는 CO2 중립인가? (2) 관측된 CO2 수지의 경년 변동이 문헌에 보고된 조절 인자들과의 선형적인 인과관계로 설명이 가능한가? 이에 답하기 위해, 본 연구는 KoFlux GDK 관측지에서 에디 공분산 기술로 2006년부터 2020년까지 15년 동안 관측된 CO2 플럭스 자료와 생기상학적 자료를 분석하였다. 연구 결과, (1) GDK는 15년 자료를 평균해서 보면 약한 CO2 발원이며, 관측기간 동안 흡원과 발원 사이를 오갔으나 최근 5년 동안 CO2 발원으로서의 강도가 증가하고 있다. (2) 전천일사, 생장기간, 엽면적지수의 경년 변동은 총일차생산량(Gross Primary Production, GPP)의 경년 변동과 양의 상관관계(R2=0.32~0.45)가 있는 반면, 기온과 지표면 온도의 경년 변동은 생태계 호흡(Ecosystem Respiration, RE)의 경년 변동과 유의한 상관관계가 없었다. 또한, 관측기간 초반(첫 10년)의 CO2 플럭스와 기상요인 및 생물학적 요인으로 학습시킨 기계학습은 관측기간 후반(최근 5년)의 GPP와 RE의 경년 변동을 제대로 모사해내지 못했다. 단, 고사목에서 배출된 탄소 추정량이 CO2 발원으로의 전환에 일부 기여했을 것으로 추정된다. GDK의 장기 CO2 수지 역학에 대해 올바로 이해하고 해석하기 위해서는, 분석과 모델링을 위한 복잡계과학 기반의 새로운 프레임워크가 필요하다. 더불어, 플럭스 모니터링 및 자료 품질 유지와 함께 고사목과 교란을 지속적으로 모니터링하는 것이 중요함을 다시 한 번 확인하였다.

    영어초록

    After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) ( R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국농림기상학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 17일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:17 오후