• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용 (Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment)

12 페이지
기타파일
최초등록일 2025.04.25 최종저작일 2019.12
12P 미리보기
노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용
  • 미리보기

    서지정보

    · 발행기관 : 한국시뮬레이션학회
    · 수록지 정보 : 한국시뮬레이션학회 논문지 / 28권 / 4호 / 21 ~ 32페이지
    · 저자명 : 최선한

    초록

    군집에 대한 사회적 행동 모델에 영감을 받은 군집 최적화 알고리즘은 복잡한 최적화 문제 해결에서부터 인공 신경망의 학습에까지 활용되는 대표적인 메타휴리스틱 최적화 알고리즘 중의 하나이다. 하지만 이 알고리즘은 기본적으로 확률적 노이즈가 존재하지 않는 결정적인 환경에서 개발되었기 때문에, 많은 경우 확률적 노이즈가 존재하는 실제 문제에 적용하기에 어려움이 있었다. 본 논문에서는 이를 개선하기 위하여 불확실 평가 기법이라고 정의되는 통계적 가설 검정 기반의 리샘플링 기법을 적용한다. 이 기법을 통하여 입자 군집 최적화 알고리즘의 성능에 가장 큰 영향을 미치는 입자들의 전역 최적을 정확하게 찾으므로 노이즈 환경에서 입자들이 최적해로 보다 정확하고 빠르게 수렴하도록 한다. 다양한 벤치마크 문제들에 대한 기존 알고리즘들과의 비교 실험 결과는 제안하는 알고리즘의 개선된 성능을 입증하고, 사례 연구의 결과는 본 연구의 필요성을 강조한다. 본 연구 결과가 4차 산업혁명 시대에 디지털 트윈 등을 통한 시뮬레이션 기반 시스템 최적화에 효과적으로 적용될 수 있을 것이라 기대한다.

    영어초록

    Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles’ global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:04 오후