• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가 (Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin)

12 페이지
기타파일
최초등록일 2025.04.25 최종저작일 2020.09
12P 미리보기
울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국산림과학회
    · 수록지 정보 : 한국산림과학회지 / 109권 / 3호 / 259 ~ 270페이지
    · 저자명 : 김은숙, 이보라, 김재범, 조낭현, 임종환

    초록

    최근 20년 동안 고온, 건조 등 이상기상 현상이 빈발해지면서 병해충으로 인한 피해가 아닌 생리적 스트레스로 인한소나무 피해 사례가 지속적으로 보고되고 있다. 2014년도에는 울진 소광리 산림유전자원보호구역 내에 금강소나무(Pinus densiflora for. erecta Uyeki)의 집단고사가 발견되어 이에 대한 원인 구명과 산림관리방안 마련이 요구되었다. 이에 본 연구는 2008~2015년 항공사진에서 발견된 울진 소광리 금강소나무 고사 피해 발생 지역의 지형 및 임분 특성을 파악하여 고사 발생의 영향 요인을 도출하고 이를 기반으로 전체 지역의 고사피해 발생 위험지역을 예측하는 것을 목표로 하였다. 소나무 고사발생 지점 정보와 해발고도, 경사 등의 지형정보, 영급, 경급 등의 임분 정보 등 총 14개의 설명변수를 이용하여 고사발생 예측모델을 구축하였다. 모형 개발에는 Decision Tree, Random Forest (RF), Support Vector Machine (SVM) 등 기계학습 기법을 적용하였으며, RF와 SVM가 정확도 93% 이상으로 좋은 성능을 보였다. 소나무 고사와 관련된 주요 변수 분석 결과, 소나무 고사의 지형적인 취약지역은 해발고도가 높은 동시에 일사량이 높으며 수분 조건이 불리한 지역이었으며, 임분 특성 중에서는 특히 5~15m 높이의 수직적 임분밀도가 높은 소나무림, 그리고 영급이 높은 소나무림에서 고사 위험성이 높다고 평가되었다. RF와 SVM 모형 예측에 따라, 소나무 고사위험도가 높은 지역의 면적은 연구대상지 전체 소나무림면적의 약 9.5%, 115ha로 평가되었다. 본 연구의 고사위험도 평가 결과는 금강소나무 취약지역의 현황을 조사하고 아직 피해가 발생하지 않은 취약지역에 대한 적극적인 기후변화 적응 산림관리를 수행하기 위한 기반자료로 활용될 수 있다.

    영어초록

    Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques–Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5–15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산림과학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 11일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:47 오전