• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

맵리듀스 기반 대량 RDF 데이터셋 압축 변환 및 저장 방법 (Compression Conversion and Storing of Large RDF datasets based on MapReduce)

8 페이지
기타파일
최초등록일 2025.04.25 최종저작일 2022.04
8P 미리보기
맵리듀스 기반 대량 RDF 데이터셋 압축 변환 및 저장 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 4호 / 487 ~ 494페이지
    · 저자명 : 김인아, 이경하, 이규철

    초록

    최근 데이터를 활용한 분석에 대한 수요와 함께 분석 데이터인 지식 그래프의 크기는 점차 증가하여, 웹에서 수집한 데이터를 지식 그래프로 추출하였을 때 약 820억개의 엣지(Edge)를 가지는 수준까지 도달하였다. 많은 지식 그래프들은 웹 자원에 대한 메타데이터를 표현하기 위한 W3C 표준인 RDF(Resource Description Framework) 형식으로 표현되며, RDF 특성으로 인해 기존의 RDF 저장소들은 대량 RDF 데이터를 압축하고 저장할 때 처리 시간의 오버헤드가 발생하는 문제점을 가진다. 본 논문은 이러한 문제점을 개선하기 위해, 맵리듀스를 사용하여 대량 RDF 데이터를 정수 ID로 압축 변환하고, 수직 분할하여 저장하는 방법을 제안한다. 본 논문에서 제안한 방법은 RDF-3X와 비교하였을 때 최대 25.2배, H2RDF+와 비교하였을 때 최대 3.7배까지의 높은 성능 향상을 보였다.

    영어초록

    With the recent demand for analysis using data, the size of the knowledge graph, which is the data to be analyzed, gradually increased, reaching about 82 billion edges when extracted from the web as a knowledge graph. A lot of knowledge graphs are represented in the form of Resource Description Framework (RDF), which is a standard of W3C for representing metadata for web resources. Because of the characteristics of RDF, existing RDF storages have the limitations of processing time overhead when converting and storing large amounts of RDF data. To resolve these limitations, in this paper, we propose a method of compressing and converting large amounts of RDF data into integer IDs using MapReduce, and vertically partitioning and storing them. Our proposed method demonstrated a high performance improvement of up to 25.2 times compared to RDF-3X and up to 3.7 times compared to H2RDF+.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 06일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:36 오전