• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용 (Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System)

9 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2010.02
9P 미리보기
FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용
  • 미리보기

    서지정보

    · 발행기관 : 한국콘크리트학회
    · 수록지 정보 : 콘크리트학회 논문집 / 22권 / 1호 / 19 ~ 27페이지
    · 저자명 : 박태원, 나웅진, 권성준

    초록

    건축물이나 교량과 같은 RC 구조물의 경우, 다양한 유해 환경하의 재료적인 열화나 구조적 문제로 콘크리트의 노후화 및 손상이 발생하게 된다. 콘크리트의 균열이나 철근의 부식, 구조 단면의 변형 등은 구조적 안전성 저하 및 구조물 거동 특성 변화의 주요 원인이 되기도 한다. 따라서 이와 같은 콘크리트 구조물의 보수 보강을 위하여, 효과적이고 적용이 간편한 공법의 개발이 콘크리트 분야의 중요한 연구 과제 중의 하나로 인식되어 왔다. 다양한 보수 보강 기법들이 과거 수십 년 동안 개발되어 적용되고 있으며, 이중에서도 최근 FRP 복합 재료를 구조물의 외부에 접착시키는 방법을 통한 보강 방식이 많이 사용되고 있다. 이 연구는 인공 지능(AI)의 일종인 뉴로퍼지모델(ANFIS) 을 이용하여, FRP로 보강된 원주형 콘크리트 부재의 보강 효과를 분석하는데 그 목적이 있다. ANFIS 모델을 이 연구에 적용하기 위하여, 기존 연구 자료 및 실험에서 얻은 결과를 통해 학습 데이터와 시험 데이터 세트를 구축하였다. 이 연구에서 구축된 ANFIS 모델은 기존 피보강 콘크리트의 압축강도, 보강재의 두께, 보강재의 보강 겹수, 보강재의 탄성계수, 보강재의 파단강도 및 보강재와 피보강재의 체적비, 피보강재의 부재크기를 입력 자료의 파라미터로 사용하여, 압축강도, 변형률, 2차탄성계수 등을 예측하는 방식으로 활용될 수 있으며, ANFIS 모델을 통하여 예측된 결과를 기존 연구자들이 제안한 FRP 보강 콘크리트 부재의 구성 방정식과 비교할 때 더 높은 정확도로 예측이 가능함을 확인할 수 있다.

    영어초록

    Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing data set, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“콘크리트학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:17 오후