• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기술 분석과 환경요소를 이용한 주가 예측률 향상을 위한 딥러닝 병렬 모델 (Deep Learning Parallel Model to Improve Stock Price Prediction Rate using Technical Analysis and Environmental Factors)

9 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2023.11
9P 미리보기
기술 분석과 환경요소를 이용한 주가 예측률 향상을 위한 딥러닝 병렬 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보기술학회
    · 수록지 정보 : 한국정보기술학회논문지 / 21권 / 11호 / 53 ~ 61페이지
    · 저자명 : 황주훈, 김창복

    초록

    본 연구는 주가 데이터, 기술 분석 데이터, 환경요소 데이터를 이용하여, 주가예측을 위한 딥러닝 병렬 모델을 제안하였다. 예측을 위한 데이터 셋은 3개로 나누었으며, 데이터 셋 1은 시가, 고가, 저가, 종가, 거래량이며, 데이터 셋 2는 기술 분석 데이터를 추가하였으며, 데이터 셋 3은 주가에 영향을 줄 수 있는 환율, 전산업생산지수를 추가하였다. 딥러닝 모델은 기본 모델로서 DNN, LSTM, 1D-CNN 모델과 병렬 모델로서 DNN 모델을 기본으로 1D-CNN을 병합한 DCNN 모델과 LSTM을 병합한 DLSTM 모델을 제안하였다. 실험 결과, DNN과 CNN 보다는 LSTM과 BiLSTM 모델의 성능이 높았으며, 특히 병렬모델인 DLSTM 모델이 가장 성능이 좋았다. 병렬 모델인 DLSTM 모델에 대한 데이터 셋 1의 RMSE는 0.0091, 데이터 셋 2의 RMSE는 0.0080, 데이터 셋 3의 RMSE는 0.0071로서 모든 데이터가 합쳐진 데이터 셋 3의 성능이 가장 좋았다.

    영어초록

    This study proposed a deep learning parallel model for stock price prediction using stock price data, technical analysis data, and environmental factor data. The data set for prediction was divided into three, data set 1 is the opening price, high price, low price, closing price, and trading volume, data set 2 added technical analysis data, and data set 3 is the exchange rate that can affect the stock price. the overall industrial production index was added. The deep learning model proposed DNN, LSTM, and 1D-CNN models as basic models, and a DCNN model that merged 1D-CNN based on the DNN model as a parallel model, and a DLSTM model that merged LSTM as a parallel model. As a result of the experiment, the performance of LSTM and BiLSTM models was higher than that of DNN and CNN, and in particular, the DLSTM model, a parallel model, performed the best. For the DLSTM model, which is a parallel model, the RMSE of data set 1 was 0.0091, the RMSE of data set 2 was 0.0080, and the RMSE of data set 3 was 0.0071. Data set 3, which combined all data, had the best performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:08 오전