PARTNER
검증된 파트너 제휴사 자료

클릭률 예측 성능 향상을 위한 다중 배열 CNN 모형 설계 (Design of a Multi-array CNN Model for Improving CTR Prediction)

8 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2020.03
8P 미리보기
클릭률 예측 성능 향상을 위한 다중 배열 CNN 모형 설계
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 20권 / 3호 / 267 ~ 274페이지
    · 저자명 : 김태석

    초록

    클릭률(CTR) 예측은 사용자가 주어진 항목을 클릭할 확률을 추정하는 것으로 온라인 광고 수익 극대화를 위한 전략 결정에 중요한 역할을 한다. 최근 CTR 예측을 위해 CNN을 활용하는 시도가 이루어지고 있다. CTR 데이터는 특징 정보가 연관성 측면에서 의미 있는 순서를 갖지 않기 때문에, 임의의 순서로 배열될 수 있다. 하지만 CNN은 필터 사이즈에 의해 제한된 로컬 정보만을 학습하기 때문에 데이터 배열이 ​​성능에 큰 영향을 줄 수 있다. 이 논문에서는 CNN이 수집할 수 있는 모든 로컬 특징 정보를 추출할 수 있는 데이터 배열 집합을 생성하고 생성된 배열들에 대하여 개별 CNN 모듈들이 특징들을 학습할 수 있는 다중 배열 CNN 모델을 제안한다. 대규모 데이터 세트에 대한 실험 결과에 따르면 제안된 모델은 기존 CNN 대비 AUC의 RI에서 22.6% 상승 효과를, 제안된 배열 생성 방법은 임의 생성 방법보다 3.87% 성능 향상을 달성하였다.

    영어초록

    Click-through rate (CTR) prediction is an estimate of the probability that a user will click on a given item and plays an important role in determining strategies for maximizing online ad revenue. Recently, research has been performed to utilize CNN for CTR prediction. Since the CTR data does not have a meaningful order in terms of correlation, the CTR data may be arranged in any order. However, because CNN only learns local information limited by filter size, data arrays can have a significant impact on performance. In this paper, we propose a multi-array CNN model that generates a data array set that can extract all local feature information that CNN can collect, and learns features through individual CNN modules. Experimental results for large data sets show that the proposed model achieves a 22.6% synergy with RI in AUC compared to the existing CNN, and the proposed array generation method achieves 3.87% performance improvement over the random generation method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 27일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:56 오후