PARTNER
검증된 파트너 제휴사 자료

GPU 성능 향상을 위한 MSHR 활용률 기반 동적 워프 스케줄러 (MSHR-Aware Dynamic Warp Scheduler for High Performance GPUs)

8 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2019.05
8P 미리보기
GPU 성능 향상을 위한 MSHR 활용률 기반 동적 워프 스케줄러
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지. 컴퓨터 및 통신시스템 / 8권 / 5호 / 111 ~ 118페이지
    · 저자명 : 김광복, 김종면, 김철홍

    초록

    GPU는 병렬처리가 가능한 강력한 하드웨어 자원을 기반으로 높은 처리량을 제공한다. 하지만 과도한 메모리 요청이 발생하는 경우 캐쉬 효율이 낮아져 GPU 성능이 크게 감소할 수 있다. 캐쉬에서의 경합이 심각하게 발생한 경우 동시 처리되는 스레드의 수를 감소시킨다면 캐쉬에서의 경합이 완화되어 전체 성능을 향상시킬 수 있다. 본 논문에서는 캐쉬에서의 경합 정도에 따라 동적으로 병렬성을 조절할 수 있는 워프 스케줄링 기법을 제안한다. 기존 워프 스케줄링 정책 중 LRR은 GTO에 비해 워프 수준의 병렬성이 높다. 따라서 제안하는 워프 스케줄러는 L1 데이터 캐쉬 경합 정도를 반영하는 MSHR(Miss Status Holding Register)이 낮은 자원 활용률을 보일 때 LRR 정책을 적용한다. 반대로 MSHR 자원 활용률이 높을 때는 워프 수준의 병렬성을 낮추기 위해 GTO 정책을 적용하여 워프 우선순위를 결정한다. 제안하는 기법은 동적으로 스케줄링 정책을 선택하기 때문에 기존의 고정된 LRR과 GTO에 비해 높은 IPC 성능과 캐쉬 효율을 보여준다. 실험 결과 제안하는 동적 워프 스케줄링 기법은 LRR 정책에 비해 약 12.8%, GTO 정책에 비해 약 3.5% IPC 향상을 보인다.

    영어초록

    Recent graphic processing units (GPUs) provide high throughput by using powerful hardware resources. However, massive memory accesses cause GPU performance degradation due to cache inefficiency. Therefore, the performance of GPU can be improved by reducing thread parallelism when cache suffers memory contention. In this paper, we propose a dynamic warp scheduler which controls thread parallelism according to degree of cache contention. Usually, the greedy then oldest (GTO) policy for issuing warp shows lower parallelism than loose round robin (LRR) policy. Therefore, the proposed warp scheduler employs the LRR warp scheduling policy when Miss Status Holding Register(MSHR) utilization is low. On the other hand, the GTO policy is employed in order to reduce thread parallelism when MSHRs utilization is high. Our proposed technique shows better performance compared with LRR and GTO policy since it selects efficient scheduling policy dynamically. According to our experimental results, our proposed technique provides IPC improvement by 12.8% and 3.5% over LRR and GTO on average, respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 20일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:35 오전