PARTNER
검증된 파트너 제휴사 자료

한국 NPL시장 수익률 예측에 관한 연구 (A study on the prediction of korean NPL market return)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
17 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2019.06
17P 미리보기
한국 NPL시장 수익률 예측에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 25권 / 2호 / 123 ~ 139페이지
    · 저자명 : 이현수, 정승환, 오경주

    초록

    국내 NPL (Non performing loan) 시장은 1998년에 형성되었지만, 본격적으로 활성화 된 시기는 2009년으로역사가 짧은 시장이다. 이로 인해 NPL 시장에 대한 연구도 아직까지는 활발히 진행되지 않고 있는 상황이다.
    본 연구는 NPL 시장의 각 물건 별 기준 수익률 달성 유무를 예측할 수 있는 모델을 제안한다. 모델 구축에 사용되는 종속변수는 물건 별 최종 수익률이 기준 수익률 수치 도달 여부를 나타내는 이항변수를 사용하였고, 독립변수로는 물건의 특성을 나타내는 11개의 변수를 대상으로 one to one t-test와 logistic regression stepwise, decision tree를 수행하여 의미있는 7개의 독립변수를 선별하였다. 그리고 통상적으로 사용되는 기준 수익률 수치(12%)가 의미있는 기준 수치인지 확인하기 위해 수치 값을 조절해가며 종속변수를 산출하여 예측모델을 구축해보았다. 그 결과 12%의 기준 수익률 수치로 산출한 종속변수를 이용하여 구축한 예측모델의 평균 Hit ratio 가 64.60%로 가장 우수하다는 결과를 얻었다. 다음으로 선별된 7개의 독립변수들과 12%를 기준으로한 수익률달성유무 종속변수를 이용하여 판별분석, 로지스틱 회귀분석, 의사결정나무, 인공신경망, 유전자알고리즘 선형모델의 5가지 방법론을 적용해 예측모델을 구축해보았다. 5가지 방법론으로 도출한 예측 모델 간 Hit ratio를 비교한 결과 인공신경망을 이용하여 구축한 예측모델의 Hit ratio가 67.4%로 가장 우수한 결과를 도출해내었다.
    본 연구를 통해 추후 NPL시장 신규 물건 매매에 있어서 7가지의 독립변수들과 인공신경망 예측 모델을 활용하는 것이 효과적임을 증명하였다. 물건의 12% 수익률 달성 여부를 사전에 예측해봄으로써 유동화회사가 투자의사결정을 하는 데에 도움을 줄 것으로 예상하며, 나아가 NPL 시장의 거래가 적정한 가격 선에서 진행됨으로인해 유동성이 더욱 높아질 것이라 기대한다.

    영어초록

    The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business.
    In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed.
    Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)).
    The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached.
    This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%.
    In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best.
    Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 18일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:51 오후