PARTNER
검증된 파트너 제휴사 자료

개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론 (An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles’ Time Headway Data)

16 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2022.04
16P 미리보기
개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론
  • 미리보기

    서지정보

    · 발행기관 : 한국ITS학회
    · 수록지 정보 : 한국ITS학회 논문지 / 21권 / 2호 / 17 ~ 32페이지
    · 저자명 : 김동민, 심지섭

    초록

    본 연구에서는 개별 차량의 차두 시간(time headway) 정보를 활용하여 고속도로 환경에서의단일 링크에 대한 교통류 모형(flow-density diagram)을 추정하는 방법에 대해 탐구한다. 차두시간 기반 교통류 모형(empirical flow-density diagram) 연구를 위해 차량용 비전 센서가 탑재된실험 차량에서 9개월동안 수집된 데이터의 전처리 및 GIS 기반 맵 매칭을 수행한다. 기존의교통류 모델식을 활용한 차두 시간 기반 교통류 모형(empirical flow-density diagram)의 검증을위해, 차량 검지기 기반의 VDS(Vehicle Detection System) 데이터(loop detection traffic data) 기반교통류 모형과 결과 비교 및 분석을 수행한다. 차두 시간 기반 교통류 모형의 추정 오차 원인을 분석하기 위해 각 교통류 모형의 차두 시간 및 차두 거리의 확률분포와 단위시간 교통량과차량 밀도의 표준편차를 활용하였다. 분석 결과 링크 내 제한된 샘플 차량 대수 및 수집 데이터에 대한 주행환경 편향성이 추정 오차의 주된 요인이며. 이에 따른 추정 오차 개선을 위한방법에 대해 제안한다.

    영어초록

    This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles’ time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:18 오전