• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구 (Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index)

7 페이지
기타파일
최초등록일 2025.04.23 최종저작일 2023.02
7P 미리보기
개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 16권 / 1호 / 1 ~ 7페이지
    · 저자명 : 이영석

    초록

    시각 피질로부터 영감을 심층 신경망의 일종인 컨벌루션 신경망은 영상 관련 분야에서 이미 인간의 시각처리 능력을 넘어서 다양한 분야에 응용되고 있지만 적대적 공격의 출현으로 모델의 성능이 저하되는 심각한 위험에 노출되어 있다. 또한 적대적 공격에 대응하기 위한 방어 기술은 해당 공격에 효과를 보이지만 다른 종류의 공격에는 취약하다. 적대적 공격에 대응하기 위해서는 적대적 공격이 컨벌루션 신경망 내부에서 어떤 과정을 통하여 성능이 저하되는 지에 대한 분석이 필요하다. 본 연구에서는 신경생리학 분야에서 뉴런의 활동을 측정하기 위한 척도인 개체군 희소성 인덱스를 이용하여 AlexNet과 VGG11 모델의 적대적 공격에 대한 분석을 수행하였다. 수행된 연구를 통하여 적대적 예제에 대한 개체군 희소성 인덱스가 AlexNet에서는 전 연결 층에서 개체군 희소성이 증가하는 현상을 발견할 수 있었으며 이와 같은 동작은 일반적인 신경망의 동작에 반하는 결과로서 적대적 예제가 신경망의 동작에 영향을 미치고 있다는 강력한 증거이며 또한 동일한 실험을 실시한 VGG11에서는 전체 레이어에서 개체군 희소성 인덱스가 전반적으로 감소하여 개체 인식의 성능이 감소되는 활동을 관찰 할 수 있었다. 이와 같은 결과는 신경생리학적 관점에서 뉴런의 활동을 관찰하는 방식을 인공지능 분야에서도 활용하고 분석할 수 있는 방법을 제시하였다.

    영어초록

    Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:05 오전