PARTNER
검증된 파트너 제휴사 자료

데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화학습 방법론에 관한 고찰 (Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods)

8 페이지
기타파일
최초등록일 2025.04.22 최종저작일 2015.08
8P 미리보기
데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화학습 방법론에 관한 고찰
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 25권 / 4호 / 319 ~ 326페이지
    · 저자명 : 박주영, 지승현, 성기훈, 허성만, 박경욱

    초록

    최근들어, 확률론적 최적제어(stochastic optimal control) 및 강화학습(reinforcement learning) 분야에서는 데이터를활용하여 준최적 제어 전략을 찾는 문제를 위한 많은 연구 노력이 있어 왔다. 가치함수(value function) 기반 동적 계획법(dynamic programming)으로 최적제어기를 구하는 고전적인 이론은 확률론적 최적 제어 문제를 풀기위해 확고한이론적 근거 아래 확립된바 있다. 하지만, 이러한 고전적 이론은 매우 간단한 경우에만 성공적으로 적용될 수 있다.
    그러므로, 엄밀한 수학적 분석 대신에 상태 전이 및 보상 신호 값 등의 관련 데이터를 활용하여 준최적해를 구하고자하는 데이터 기반 현대적 접근 방법들은 실용적인 응용분야에서 특히 매력적이다. 본 논문에서는 확률론적 최적제어전략과 근사적 추론 및 기계학습 기반 데이터 처리 방법을 접목하는 방법론들을 고려한다. 그리고 이러한 고려를 통하여 얻어진 방법론들을 금융공학을 포함한 다양한 응용 분야에 적용하고 그들의 성능을 관찰해보도록 한다.

    영어초록

    Recently in the fields o f stochastic optimal control ( SOC) and reinforcemnet l earning (RL), there have been a great deal of research efforts for the problem of finding data-based sub-optimal control policies. The conventional theory for finding optimal controllers via the value-function-based dynamic programming was established for solving the stochastic optimal control problems with solid theoretical background. However, they can be successfully applied only to extremely simple cases. Hence, the data-based modern approach, which tries to find sub-optimal solutions utilizing relevant data such as the state-transition and reward signals instead of rigorous mathematical analyses, is particularly attractive to practical applications. In this paper, we consider a couple of methods combining the modern SOC strategies and approximate inference together with machine-learning-based data treatment methods. Also, we apply the resultant methods to a variety of application domains including financial engineering, and observe their performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:42 오후