PARTNER
검증된 파트너 제휴사 자료

KNN 알고리즘을 활용한 고속도로 통행시간 예측 (Expressway Travel Time Prediction Using K-Nearest Neighborhood)

7 페이지
기타파일
최초등록일 2025.04.21 최종저작일 2014.12
7P 미리보기
KNN 알고리즘을 활용한 고속도로 통행시간 예측
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 34권 / 6호 / 1873 ~ 1879페이지
    · 저자명 : 신강원, 심상우, 최기주, 김수희

    초록

    실시간 자료를 반영한 통행시간 예측 기법은 다양하지만 관련 연구 검토 결과 과거이력데이터가 충분하다면 타 모형에 비해 K 최대근접이웃(K-Nearest Neighbors)의 정확도가 우수하므로 본 연구에서는 이에 대한 적용 방법 도출 및 가능성 평가를 목적으로 한다. 본 연구에서는KNN의 입력 자료로 TCS 교통량 및 DSRC 구간통행시간의 실시간 및 과거 이력자료, 경로통행시간 이력자료를 활용하였다. 통행시간 예측치는 TCS 교통량 및 DSRC 구간통행시간의 실시간 자료와 유사한 경로통행시간을 탐색한 후 이를 가중평균하여 산출하였다. 예측 기법을 적용한 결과 DSRC 구간통행시간의 가중치가 증가할수록 정확도는 증가하였으며, 이는 실시간 교통상황 변화를 DSRC 구간통행시간이 잘 반영하기 때문이다. 그러나 TCS 교통량을 기반으로 한 경우 역시 정확도의 차이가 크지 않으며, 변화 추이도 유사하게 나타났다. 이러한 결과를 볼 때향후 대용량의 과거이력자료가 축적될 경우 예측오차는 더욱 감소될 것으로 기대된다.

    영어초록

    There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 14일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:03 오전