• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

학업성취도 예측 요인 분석 및 인공지능 예측 모델 개발 - 블렌디드 수학 수업을 중심으로 (Analysis of achievement predictive factors and predictive AI model development – Focused on blended math classes)

15 페이지
기타파일
최초등록일 2025.04.19 최종저작일 2022.05
15P 미리보기
학업성취도 예측 요인 분석 및 인공지능 예측 모델 개발 - 블렌디드 수학 수업을 중심으로
  • 미리보기

    서지정보

    · 발행기관 : 한국수학교육학회
    · 수록지 정보 : 수학교육 / 61권 / 2호 / 257 ~ 271페이지
    · 저자명 : 안도연, 이광호

    초록

    본 연구는 학습분석학을 기반으로 블렌디드 수학 수업에서 발생하는 학습 데이터를 활용하여 수학 학업성취도를 예측하는 요인이 무엇인지 탐색하고, 그 결과를 활용하여 수학 학업성취도를 예측하는 인공지능 모델을 개발하고자 하였다. 초등학교 5~6학년 학생 205명의 수학 학습 성향, LMS 데이터, 평가 결과를 수집하여 랜덤포레스트 모델을 분석하였다. 수학 학습성향에는 수학학습 자신감, 수학불안, 수학교과 흥미, 수학학습 자기관리, 수학학습전략이 포함되었다. LMS 데이터로 e학습터의 진도율, 학습 횟수, 학습 시간을 수집하였다. 평가는 진단평가와 각 단원의 단원평가 결과를 사용하였다.
    분석 결과 수학 학습성향 중 수학 학습 전략이 저성취 학생을 예측에 가장 중요한 요인으로 나타났다. LMS 학습 데이터는 예측에 미미한 영향을 주었다.
    본 연구는 인공지능 모델이 블렌디드 수학 수업에서 발생하는 학습 데이터로 저성취 학생을 예측할 수 있음을 시사한다. 또한 분석 결과를 통해 교사가학생을 평가하고 피드백하는 데 구체적인 정보를 제공하여 교사의 평가 활동에 보조적인 역할을 할 수 있을 것으로 기대한다.

    영어초록

    As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6th graders conducting blended mathematics classes, we tried to find out what factors predict mathematics academic achievement and developed an artificial intelligence model that predicts mathematics academic performance using the results. Math learning propensity, LMS data, and evaluation results of 205 elementary school students had analyzed with a random forest model. Confidence, anxiety, interest, self-management, and confidence in math learning strategy were included as mathematics learning disposition. The progress rate, number of learning times, and learning time of the e-learning site were collected as LMS data. For evaluation data, results of diagnostic test and unit test were used. As a result of the analysis it was found that the mathematics learning strategy was the most important factor in predicting low-achieving students among mathematics learning propensities. The LMS training data had a negligible effect on the prediction. This study suggests that an AI model can predict low-achieving students with learning data generated in a blended math class. In addition, it is expected that the results of the analysis will provide specific information for teachers to evaluate and give feedback to students.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:59 오전