• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

내비게이션 데이터를 활용한 시간대 그룹별 통행량 집중률 분포 패턴 분석 (Exploring Temporal Traffic Variation Patterns with Navigation Data)

19 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2021.06
19P 미리보기
내비게이션 데이터를 활용한 시간대 그룹별 통행량 집중률 분포 패턴 분석
  • 미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 39권 / 3호 / 221 ~ 239페이지
    · 저자명 : 송용욱, 김익기, 남호현, 박상준

    초록

    이 연구는 내비게이션의 실측 데이터를 이용하여 지역 간 통행에 있어 통행거리별로 출발시각 선택에 차이가 있다는 가설과 이와 같은 출발시각 차이는 통행거리별로 시간대별 교통량 분포패턴의 차이를 야기한다는 행태적 가설을 검증하고자 하였다. 현재 교통수요추정 시 가구통행실태조사 표본자료를 전수화하여 추정된 AAWDT(Annual Average WeekDay Traffic)를 이용하여 첨두 ‧ 비첨두의 집중률을 적용하여 교통패턴을 추정 분석하고 있다. 하지만 이와 같이 통행거리(통행시간)에 상관없이 획일적 첨두 및 비첨두 집중률을 적용하여 네트워크 노선배정분석을 하여 각 도로구간의 첨두시, 비첨두시의 교통량을 추정하는 것은 현실적 통행패턴과는 차이가 클 것으로 고려된다. 그래서 본 연구에서는 현실에서 실측 조사된 내비게이션 자료로부터 통행거리별 출발시각의 차이로 인한 첨두시간대의 차이를 네트워크 분석에 반영함으로써 출발시각 시점을 기준으로 첨두시와 비첨두시의 집중률 패턴을 좀 더 현실적으로 추정하는 방법을 제안한다. 본 연구에서 사용한 자료는 현재 국내 내비게이션 서비스 중 가장 높은 점유율을 확보하고 있는 SK T-map 자료이며, 2016년의 평일 261일의 자료를 사용하였다. 적용한 분석도구는 통계 패키지 프로그램인 SAS와 데이터 마이닝 플랫폼인 RapidMiner를 이용하여 k-means 클러스터링을 실시하였다. 내비게이션 실측자료를 기반으로 지역 간 통행의 통행거리를 통행특성이 유사하도록 거리별 7개의 그룹으로 구분하였으며, 구분한 거리별 그룹에 대해 시간대별 평균 교통량 비율을 산출하였다. 위에서 구한 통행거리별 7개 그룹의 출발시간 기준 24시간 교통량 집중률 자료를 활용하여 그룹별 시간대를 첨두, 비첨두 및 심야로 구분하는 것과 같이 유사 교통패턴을 그룹화 및 단순화하여 시간대별 분포패턴을 가장 현실적으로 표현 하는 방법에 대한 연구를 수행하였다. 즉, 7개의 그룹의 하루 24시간의 시간대별 교통량 집중률을 k=2부터 k=5까지 k-means 클러스터링 분석을 통해 집중률 패턴이 유사한 시간대를 하나의 그룹으로 구분하였다. k값에 따라 k-means 클러스터링 결과별 BIC, Elbow Method, 실루엣 계수, 상관계수 분석과 절편이 없는 단순회귀모형의 기울기와 값을 평가 분석결과 시간대별 교통 패턴을 3개로 구분하는 것이 최적의 결과로 도출되었다. 또한 네트워크 분석이 가능하도록 연구결과로 얻어진 통행거리 구분과 시간대별 교통량 집중률 패턴 구분이 반영된 OD 자료를 구축하는 방법도 제안하였다. 이와 같이 통행거리별 출발시각의 차이를 반영한 하루의 시간대 그룹별 OD 자료에 의한 네트워크의 노선배정(traffic assignment)을 수행할 경우 단거리, 중거리 및 장거리 통행이 혼재한 도로구간(링크) 상의 시간대 구간 그룹의 교통량 패턴을 더욱 현실적 분석을 가능하게 할 수 있을 것으로 기대된다.

    영어초록

    This study was intended to verify the hypothesis that there is a difference in the choice of start time by travel distance and the behavioral hypothesis that such difference in departure time results in differences in vehicle trip distribution patterns by time range using actual measurement data of navigation. In the current, when estimating traffic demand, use AAWDT (Annual Average WeekDay Traffic) estimated from household traffic survey sample data to estimate traffic pattern by applying the ratio of peak and non-peak vehicle trip. However, it is thought that estimating the concentration ratio of roads with uniform rate of peak and non-peak regardless of travel distance (travel time) to analyze the network path will differ significantly from the actual traffic patterns. This study proposes a more realistic method of estimating by reflecting the traffic patterns which difference in peak and non-peak time due to differences in departure time by distance using actual measurement data of navigation. in the network analysis. This study use SK T-map data, which has the highest share of navigation service in Korea, of 261 day on weekdays during one year. SAS (statistical package program) and RapidMiner (data mining platform) were used as analysis tools to construct k-means clustering. Based on actual navigation data, interregional travel distance was divided into seven groups to have similar characteristics, and the average traffic rate was calculated by the distance groups. By grouping and simplifying similar traffic patterns such as peak, non-peak and night using 24-hours traffic concentration rate data from derived seven distance group, a study was conducted on how to most realistically express traffic patterns. In other word, using the 24-hour traffic concentration rate of seven distance groups, through the k-means clustering analysis from k=2 to k=5, the time zone with similar traffic pattern of concentration was divided into one group. The results of BIC, Elbow, Silhouette, correlation coefficient analysis by k-means clustering result, slope, and value of non-segmented simple regression model were compared according to k value. As a result of this study, it was found that it is best to classified traffic pattern by time into three groups. In addition, it proposed a method of building OD data to enable network analysis that reflected the classification of travel distance and traffic concentration ratio patterns obtained from the research results. It is expected that a more realistic analysis of the traffic patterns of time bands on roads where short, medium and long distance traffic is mixed when performing a traffic assignment based on OD data which reflecting differences in departure time by travel distance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한교통학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 25일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:15 오후