• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템 (Step Count Detection Algorithm and Activity Monitoring System Using a Accelerometer)

11 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2011.03
11P 미리보기
가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - CI / 48권 / 2호 / 127 ~ 137페이지
    · 저자명 : 김윤경, 노형석, 조위덕

    초록

    본 논문에서는 3축 가속도 센서를 이용하여 사람이 보행 시 발생하는 센서 데이터를 획득하여 실시간 걸음 수 검출과 활동량으로 변환 가능한 웨어러블 디바이스를 개발하였다. 피험자 59명을 대상으로 트레드밀에서 호흡가스대사분석기(K4B2),Actical 그리고 본 연구에서 개발된 디바이스를 착용 후 36분 동안 테스트 프로토콜에 따라 느리게 걷기, 걷기, 빠르게 걷기,천천히 뛰기, 뛰기, 빠르게 뛰기 등의 다양한 걸음 속력에서 테스트를 진행하였다. 3축 가속도 센서의 X, Y, Z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude :SVM)를 사용하였다. 또한 정확한 걸음 수를 검출하기 위해 휴리스틱 알고리즘(Heuristic Algorithm :HA)을 제안하고 적응적인 임계값 알고리즘(Adaptive Threshold Algorithm :ATA),적응적인 잠금 구간 알고리즘(Adaptive Locking Period Algorithm :ALPA)을 제안한다. 그리고 인체 활동량 측정을 위하여 가속도 센서 출력 데이터와 피험자 정보를 이용하여 에너지소비량(Energy Expenditure :EE)을 추정하는 회귀식을 도출하였다.
    실험결과 제안하는 알고리즘의 걸음 수 인식률은 97.34%를 보였으며 활동량 변환 알고리즘도 Actical의 성능보다 1.61% 향상되었다.

    영어초록

    We have developed a wearable device that can convert sensor data into real-time step counts and activity levels.
    Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing a portable gas analyzer (K4B2), an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). A regression equation estimating the energy expenditure (EE) was derived by using data from the accelerometer and information on the participants. The recognition rate of our algorithm was 97.34%, and the performance of the activity conversion algorithm was better than that of the Actical device by 1.61% .

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - CI”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 17일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:35 오후