• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

공동크리깅 모형을 활용한 일반국도 연평균 일교통량 추정 (Annual Average Daily Traffic Estimation using Co-kriging)

14 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2013.02
14P 미리보기
공동크리깅 모형을 활용한 일반국도 연평균 일교통량 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국ITS학회
    · 수록지 정보 : 한국ITS학회 논문지 / 12권 / 1호 / 1 ~ 14페이지
    · 저자명 : 하정아, 허태영, 오세창, 임성한

    초록

    연평균 일교통량(AADT)은 교통 및 도로부문에서 중요한 기초자료로 활용되지만 예산 제약 등의 한계로 인해 일부 지점에 대해서만 상시조사를 통해서 AADT를 산출하고 있으며, 대다수의 지점에서는 단기 교통량 조사에서 수집된 샘플 자료를 이용하여 AADT를 추정 활용하고 있다. 현재 단기 교통량 조사지점의 AADT 추정을 위하여 조사된 자료를 단순 평균하는 방법이 적용되고 있다. 기존 AADT 추정모형은 보정계수를 적용하는 방법이 대표적인 방법이나, 이 방법은 단기 교통량 조사 지점이 어떤 상시조사 지점의 보정계수를 적용할지에 대한 객관적인 방법이 없어 한계가 있다. 이에 본 연구에서는 공간통계모형을 도입하여 교통량 자료의 공간상관관계를 분석하고, 크리깅 모형을 적용하여 AADT를 추정하는 방법에 대하여 알아보았다. 공간통계모형의 AADT 추정의 정확도를 기존 연구와 비교하기 위하여 동일 대구간의 상시조사 지점의 보정계수를 적용하는 방법(방법 1)과 보정계수 그룹핑을 이용하여 해당 그룹의 보정계수를 적용하는 방법(방법 2), 공동크리깅을 적용한 방법(방법 3)을 비교분석하였다. 분석결과 공동크리깅을 적용한 모형은 기존 모형에 비해 AADT 추정 정확도가 향상되는 것으로 나타났다.

    영어초록

    Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it’s difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국ITS학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:19 오후