• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델 (Prediction Model of Energy Consumption of Wired Access Networks using Machine Learning)

8 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2021.02
8P 미리보기
기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 14권 / 1호 / 14 ~ 21페이지
    · 저자명 : 서유화, 김은회

    초록

    그린 네트워킹(Green networking)은 유선 데이터 네트워크(Wired data network)에서 통합적인 에너지 관리를 통해 에너지 낭비와 CO2 배출 감소를 유도하기 위해 주요 관심분야가 되었다. 그러나 액세스 네트워크(access networks)는 유선 데이터 네트워크 영역에서 사용자 단말을 제외하면 가장 많은 에너지를 소비하는 영역임에도 불구하고 그 범위가 매우 광대하여 통합적인 관리가 어렵고, 그 에너지 소모량과 에너지 절약 잠재성을 예측하기가 매우 어렵다. 본 논문에서는 기존의 다양한 수학적 예측 모델과 실험 및 실측 데이터를 이용하여 유선 액세스 네트워크의 에너지 소모량 데이터를 수집하고 머신러닝(Machine learning)의 지도학습을 이용한 다중 선형 회귀모델을 생성한다. 또한 생성한 모델로부터 다양한 실험을 통해 회귀모델의 성능을 최적화하여 유선 액세스 네트워크의 에너지 소모량을 예측하였고 생성한 회귀모델은 널리 알려진 평가 지표를 통해 성능을 평가하였다.

    영어초록

    Green networking has become a issue to reduce energy wastes and CO2 emission by adding energy managing mechanism to wired data networks. Energy consumption of the overall wired data networks is driven by access networks, expect for end devices. However, on a global scale, it is more difficult to manage centrally energy, measure and model the real energy use and energy savings potential of the access networks. This paper presented the multiple linear regression model to predict energy consumption of wired access networks using supervised learning of machine learning with data collected by existing investigated materials, actual measured values and results of many models. In addition, this work optimized the performance of it by various experiments and predict energy consumption of wired access networks. The performance evaluation of the regression model was achieved by well-knowned evaluation metrics.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:11 오후