• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축 (Building of Prediction Model of Wind Power Generationusing Power Ramp Rate)

7 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2012.01
7P 미리보기
Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 17권 / 1호 / 212 ~ 218페이지
    · 저자명 : 황미영, 김성호, 윤은일, 김광득, 류근호

    초록

    전 세계적으로 화석연료의 많이 사용이 증가되고 있으며 이로 인해 온실가스가 배출되어 지구 온난화와 환경오염이 심각해지고 있는 실정이다. 지구의 환경오염을 줄이기 위해서 무공해 청정에너지인 신재생에너지에 대한 관심이 증가되는 추세인데, 그중에서도 풍력발전은 환경오염 물질을 배출하지 않고, 자원량이 무한대이기 때문에 많은 관심을 받고 있다. 하지만, 풍력발전은 전력 생산량이 불규칙한 단점을 갖고 있어 풍력 터빈의 손상과 전력 생산량이 불규칙적인 문제를 야기하여 이러한 문제점을 보완하기 위해 풍력 발전량을 정확하게 예측하는 것이 중요하다. 풍력 발전량을 정확하게 예측하기 위해서 전력 생산량이 급증 또는 급감하는 것을 의미하는 ramp의 특성을 잘 활용해야 한다. 이 논문에서는 예측의 정확도를 높이기 위하여 다계층 신경망을 이용해 예측모델을 구축하였다. 구축된 예측모델은 흔히 사용되는 풍속, 풍향 속성뿐만 아니라 Power Ramp Rate(PRR) 속성까지 사용하였다. 구축된 풍력 발전량 예측모델은 앞서 말한 세 가지 속성을 모두 사용한 경우, 두 속성을 조합하여 사용한 경우 총 4가지 예측모델을 구축하였다. 구축된 4가지 예측모델을 성능평가 한 결과 PRR, 풍속, 풍향의 속성 모두를 사용한 예측모델의 예측 값이 풍력 터빈에서 관측된 관측 값에 가장 근접하였다. 그로 인해 PRR 속성을 사용하면 풍력 발전량의 예측 정확도를 향상 시킬 수 있었다.

    영어초록

    Fossil fuel is used all over the world and it produces greenhouse gases due to fossil fuel use. Therefore, it cause global warming and is serious environmental pollution. In order to decrease the environmental pollution, we should use renewable energy which is clean energy. Among several renewable energy, wind energy is the most promising one. Wind power generation is does not produce environmental pollution and could not be exhausted. However, due to wind power generation has irregular power output, it is important to predict generated electrical energy accurately for smoothing wind energy supply. There, we consider use ramp characteristic to forecast accurate wind power output. The ramp increase and decrease rapidly wind power generation during in a short time. Therefore, it can cause problem of unbalanced power supply and demand and get damaged wind turbine. In this paper, we make prediction models using power ramp rate as well as wind speed and wind direction to increase prediction accuracy. Prediction model construction algorithm used multilayer neural network. We built four prediction models with PRR, wind speed, and wind direction and then evaluated performance of prediction models. The predicted values, which is prediction model with all of attribute, is nearly to the observed values. Therefore, if we use PRR attribute, we can increase prediction accuracy of wind power generation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:07 오전